
Transport Layer Part 1

Computer Networks and Applications

Week 4
COMP 3331/COMP 9331

Reading Guide:
Chapter 3, Sections 3.1 – 3.5

Transport layer: overview
Our goal:
§ understand principles

behind transport layer
services:
• multiplexing,

demultiplexing
• reliable data transfer
• flow control
• congestion control

§ learn about Internet transport
layer protocols:
• UDP: connectionless transport
• TCP: connection-oriented reliable

transport
• TCP congestion control

2

Transport layer: roadmap

vTransport-layer services
vMultiplexing and demultiplexing
vConnectionless transport: UDP
vPrinciples of reliable data transfer
vConnection-oriented transport: TCP
vPrinciples of congestion control
vTCP congestion control
vEvolution of transport-layer functionality

3

Transport layer

v Moving “down” a layer

v Current perspective:
§ Application layer is the boss….
§ Transport layer usually executing within

the OS Kernel
§ The network layer is ours to command !!

4

Network layer (some context)
v What it does: finds paths through network

§ Routing from one end host to another

v What it doesn’t:
§ Reliable transfer: “best effort delivery”
§ Guarantee paths
§ Arbitrate transmission rates

v For now, think of the network layer as giving us an “API”
with one function: sendtohost(data, host)
§ Promise: the data will go to that (usually!!)

5

Transport services and protocols

§ provide logical communication
between application processes
running on different hosts

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport

§ transport protocols actions in end
systems:
• sender: breaks application messages

into segments, passes to network layer
• receiver: reassembles segments into

messages, passes to application layer

§ two transport protocols available to
Internet applications
• TCP, UDP

6

physical
link

network (IP)

application

physical
link

network (IP)

application

transport

Transport Layer Actions

Sender:
app. msg§ is passed an application-

layer message
§ determines segment

header fields values
§ creates segment
§ passes segment to IP

transport ThTh app. msg

7

physical
link

network (IP)

application

physical
link

network (IP)

application

transport

Transport Layer Actions

transport

Receiver:

app. msg § extracts application-layer
message

§ checks header values
§ receives segment from IP

Th app. msg

§ demultiplexes message up
to application via socket

8

Two principal Internet transport protocols
mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport

§TCP: Transmission Control Protocol
• reliable, in-order delivery
• congestion control
• flow control
• connection setup

§UDP: User Datagram Protocol
• unreliable, unordered delivery
• no-frills extension of “best-effort” IP

§ services not available:
• delay guarantees
• bandwidth guarantees

9

Transport layer: roadmap

vTransport-layer services
vMultiplexing and demultiplexing
vConnectionless transport: UDP
vPrinciples of reliable data transfer
vConnection-oriented transport: TCP
vPrinciples of congestion control
vTCP congestion control
vEvolution of transport-layer functionality

10

transport

physical
link

network transport

application

physical

link
network

transport

application

physical
link

network

HTTP server
client

HTTP msg

11

transport

physical
link

network transport

application

physical

link
network

transport

application

physical
link

network

HTTP server
client

HTTP msgHt

HTTP msg

12

transport

physical
link

network transport

application

physical

link
network

transport

application

physical
link

network

HTTP server
client

HTTP msgHt

HTTP msgHtHn

HTTP msg

13

transport

physical
link

network transport

application

physical

link
network

transport

application

physical
link

network

HTTP server
client

HTTP msgHtHn

14

transport

physical
link

network transport

application

physical

link
network

transport

application

physical
link

network

HTTP server
client1 client2

P-client1 P-client2

15

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver:

transport

application

physical
link

network

P2P1

transport

application

physical
link

network

P4

transport

application

physical
link

network

P3

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

16
Note: The network is a shared resource. It does not care about your applications, sockets, etc.

How demultiplexing works

§ host receives IP datagrams
• each datagram has source IP

address, destination IP address
• each datagram carries one

transport-layer segment
• each segment has source,

destination port number
§ host uses IP addresses & port

numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

17

Connectionless demultiplexing

Recall:
§ when creating socket, must

specify host-local port # (or let
OS pick random available port):

DatagramSocket mySocket1 = new
DatagramSocket(12534);

when receiving host receives
UDP segment:
• checks destination port # in

segment
• directs UDP segment to

socket with that port #
§ when creating datagram to

send into UDP socket, must
specify
• destination IP address
• destination port #

IP/UDP datagrams with same dest.
port #, but different source IP
addresses and/or source port

numbers will be directed to same
socket at receiving host

18

Connectionless demultiplexing: an example
DatagramSocket
serverSocket = new
DatagramSocket
(6428);

transport

application

physical
link

network

P3
transport

application

physical
link

network

P1

transport

application

physical
link

network

P4

DatagramSocket mySocket1 =
new DatagramSocket (5775);

DatagramSocket mySocket2 =
new DatagramSocket
(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: 6428
dest port: 5775

source port: 5775
dest port: 6428

19

Connection-oriented demultiplexing

§ TCP socket identified by
4-tuple:
• source IP address
• source port number
• dest IP address
• dest port number

§ server may support many
simultaneous TCP sockets:
• each socket identified by its

own 4-tuple
• each socket associated with

a different connecting client

§ demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

20

Revisiting TCP Sockets

TCP handshake

Client
Socket

Welcoming, port X
Socket

Server ProcessClient Process

Connection, port X
Socket 1pipe

Client Process

Client
Socket

Connection, port X
Socket 2

pipe

21

Connection-oriented demultiplexing: example

transport

application

physical
link

network

P1
transport

application

physical
link

P4

transport

application

physical
link

network

P2

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP
address B

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

22

Browser process p1 uses port 9157
Browser process p2 uses port 5775, and p3
uses port 9157

Summary
§ Multiplexing, demultiplexing: based on segment, datagram

header field values
§ UDP: demultiplexing using destination port number (only)
§ TCP: demultiplexing using 4-tuple: source and destination IP

addresses, and port numbers
§ Multiplexing/demultiplexing happen at all layers (more later in

the course)

23

May I scan your ports?

v Servers wait at open ports for client requests
v Hackers often perform port scans to determine open, closed and unreachable

ports on candidate victims
v Several ports are well-known

§ <1024 are reserved for well-known apps
§ Other apps also use known ports

• MS SQL server uses port 1434 (udp)
• Sun Network File System (NFS) 2049 (tcp/udp)

v Hackers can exploit known flaws with these known apps
§ Example: Slammer worm exploited buffer overflow flaw in the SQL server

v How do you scan ports?
§ Nmap, Superscan, etc

http://netsecurity.about.com/cs/hackertools/a/aa121303.htm

http://www.auditmypc.com/

24

https://www.grc.com/shieldsup

Suppose we use UDP instead of TCP for communicating with a web
server where all requests and responses fit in a single UDP segment.
Suppose 100 clients are simultaneously communicating with this web
server. How many sockets are respectively active at the server and each
client?

a) 1, 1
b) 2, 1
c) 200, 2
d) 100, 1
e) 101, 1

25

Quiz: UDP Sockets

www.pollev.com/salil

ANSWER: a)
A UDP socket does not keep any information about the
other end point, see slide 19

Suppose 100 clients are simultaneously communicating with a
traditional HTTP/TCP web server. How many sockets are active
respectively at the server and each client?

a) 1, 1
b) 2, 1
c) 200, 2
d) 100, 1
e) 101, 1

26

Quiz: TCP Sockets

www.pollev.com/salil

ANSWER: d) or e) depending on whether a welcoming socket is
counted as a socket

Suppose 100 clients are simultaneously communicating with a
traditional HTTP/TCP web server. Do all the TCP sockets at the server
have the same server-side port number?

a) Yes
b) No

27

Quiz: TCP Sockets

www.pollev.com/salil

Answer: a), slide 22

Transport layer: roadmap

vTransport-layer services
vMultiplexing and demultiplexing
vConnectionless transport: UDP
vPrinciples of reliable data transfer
vConnection-oriented transport: TCP
vPrinciples of congestion control
vTCP congestion control
vEvolution of transport-layer functionality

28

UDP: User Datagram Protocol

§ “no frills,” “bare bones”
Internet transport protocol

§ “best effort” service, UDP
segments may be:
• lost
• delivered out-of-order to app

§ no connection
establishment (which can
add RTT delay)

§ simple: no connection state
at sender, receiver

§ small header size
§ no congestion control

§ UDP can blast away as fast as
desired!

§ can function in the face of
congestion

Why is there a UDP?

§ connectionless:
• no handshaking between UDP

sender, receiver
• each UDP segment handled

independently of others
29

UDP: User Datagram Protocol

§ Applications that use UDP:
§ streaming multimedia apps (loss tolerant, rate sensitive)
§ DNS
§ SNMP
§ HTTP/3

§ if reliable transfer needed over UDP (e.g., HTTP/3):
§ add needed reliability at application layer
§ add congestion control at application layer

30

UDP: User Datagram Protocol [RFC 768]

31

SNMP serverSNMP client

transport
(UDP)

physical
link

network (IP)

application

UDP: Transport Layer Actions

transport
(UDP)

physical
link

network (IP)

application

32

SNMP serverSNMP client

transport
(UDP)

physical
link

network (IP)

application

transport
(UDP)

physical
link

network (IP)

application

UDP: Transport Layer Actions

UDP sender actions:
SNMP msg§ is passed an application-

layer message
§ determines UDP segment

header fields values
§ creates UDP segment
§ passes segment to IP

UDPhUDPh SNMP msg

33

SNMP serverSNMP client

transport
(UDP)

physical
link

network (IP)

application

transport
(UDP)

physical
link

network (IP)

application

UDP: Transport Layer Actions

UDP receiver actions:

SNMP msg
§ extracts application-layer

message

§ checks UDP checksum
header value

§ receives segment from IP

UDPh SNMP msg
§ demultiplexes message up

to application via socket

34

UDP segment header

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

data to/from
application layer

35

UDP checksum

Transmitted: 5 6 11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received: 4 6 11

1st number 2nd number sum

receiver-computed
checksum

sender-computed
checksum (as received)=

36

Internet checksum

sender:
§ treat contents of UDP

segment (including UDP header
fields and IP addresses) as
sequence of 16-bit integers

§ checksum: addition (one’s
complement sum) of segment
content

§ checksum value put into
UDP checksum field

receiver:
§ compute checksum of received

segment
§ check if computed checksum equals

checksum field value:
• not equal - error detected
• equal - no error detected. But maybe

errors nonetheless? More later ….

Goal: detect errors (i.e., flipped bits) in transmitted segment

37

Internet checksum: an example

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

38

Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1
1 0

Even though
numbers have
changed (bit
flips), no change
in checksum!

39

40

UDP Checksum in Practice
Ø Checksum is the 16-bit one's complement of the one's complement

sum of a pseudo header of information from the IP header, the
UDP header, and the data, padded with zero octets at the end (if
necessary) to make a multiple of two octets.

Ø Checksum header, data and pre-pended IP pseudo-header (some
fields from the IP header)

Ø But the header contains the checksum itself?

IP pseduo-header

UDP payload

UDP header

Checksum: example

41

Note: TCP Checksum computation is exactly similar

42

v Latency sensitive/time critical
v Quick request/response (DNS, DHCP)
v Network management (SNMP)
v Routing updates (RIP)
v Voice/video chat
v Gaming (especially FPS)

v Error correction managed by periodic messages

UDP Applications

Summary: UDP
§ “no frills” protocol:
• segments may be lost, delivered out of order
• best effort service: “send and hope for the best”

§ UDP has its plusses:
• no setup/handshaking needed (no RTT incurred)
• can function when network service is compromised
• helps with reliability (checksum)

§ build additional functionality on top of UDP in application layer
(e.g., HTTP/3)

43

Transport layer: roadmap

vTransport-layer services
vMultiplexing and demultiplexing
vConnectionless transport: UDP
vPrinciples of reliable data transfer
vConnection-oriented transport: TCP
vPrinciples of congestion control
vTCP congestion control
vEvolution of transport-layer functionality

44

Principles of reliable data transfer

sending
process

data

receiving
process

data

reliable channel

application
transport

reliable service abstraction

45

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication
transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol

sending
process

data

receiving
process

data

reliable channel

application
transport

reliable service abstraction

46

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication
transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol
Complexity of reliable data

transfer protocol will depend
(strongly) on characteristics of

unreliable channel (lose,
corrupt, reorder data?)

47

Principles of reliable data transfer

sending
process

data

receiving
process

dataapplication
transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocolSender, receiver do not know
the “state” of each other, e.g.,
was a message received?
§ unless communicated via a

message

48

Reliable data transfer protocol (rdt): interfaces

sending
process

data

receiving
process

data

unreliable channel

sender-side
implementation of
rdt reliable data
transfer protocol

receiver-side
implementation of
rdt reliable data
transfer protocol

rdt_send()

udt_send() rdt_rcv()

deliver_data()

dataHeader dataHeader

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on receiver side of
channel

deliver_data(): called by rdt
to deliver data to upper layer

Bi-directional communication over
unreliable channel

data

packet

49

Reliable data transfer: getting started
We will:
§ incrementally develop sender, receiver sides of reliable data transfer

protocol (rdt)
§ consider only unidirectional data transfer
• but control info will flow in both directions!

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event
event
actions

§ Book uses finite state machines (FSM) to specify sender, receiver
§ We won’t use them in the lecture, and you won’t be asked exam questions on them

50

rdt1.0: reliable transfer over a reliable channel
§ underlying channel perfectly reliable
• no bit errors
• no loss of packets

• Nothing to do

51

Global Picture of rdt1.0

sender receiver
data

data
Solid line: error-free transmission

52

rdt2.0: channel with bit errors
§ underlying channel may flip bits in packet
• checksum (e.g., Internet checksum) to detect bit errors

§ the question: how to recover from errors?

How do humans recover from “errors” during conversation?

53

rdt2.0: channel with bit errors
§ underlying channel may flip bits in packet
• checksum to detect bit errors

§ the question: how to recover from errors?

• acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK
• negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had

errors
• sender retransmits pkt on receipt of NAK

§ new mechanisms in rdt2.0 (beyond rdt1.0):
§ error detection
§ feedback: control msgs (ACK,NAK) from receiver to sender
§ retransmission

stop and wait
sender sends one packet, then waits for receiver response

54

Global Picture of rdt2.0
sender receiver

data

NACK

data

ACK

Dotted line: erroneous transmission
Solid line: error-free transmission

55

rdt2.0 has a fatal flaw!
what happens if ACK/NAK

corrupted?
§ sender doesn’t know what

happened at receiver!
§ can’t just retransmit: possible

duplicate

handling duplicates:
§ sender retransmits current pkt

if ACK/NAK corrupted
§ sender adds sequence number

to each pkt
§ receiver discards (doesn’t

deliver up) duplicate pkt

stop and wait
sender sends one packet, then
waits for receiver response

56

rdt2.1: discussion
sender:
§ seq # added to pkt
§ two seq. #s (0,1) will suffice.

Why?
§must check if received ACK/NAK

corrupted
§ twice as many states
• state must “remember” whether

“expected” pkt should have seq #
of 0 or 1

receiver:
§must check if received packet

is duplicate
• state indicates whether 0 or 1 is

expected pkt seq #

§ note: receiver can not know if
its last ACK/NAK received OK
at sender

57

New Measures: Sequence Numbers, Checksum for ACK/NACK, Duplicate detection

Another Look at rdt2.1
sender

data (0)

receiver

ACK

data (1)

waiting for 0

sending #
0

waiting for 1

sending
1

waiting for 0

NACK

data (0)

data (0)

ACK
Duplicate Packet

Discard !!

Dotted line: erroneous transmission
Solid line: error-free transmission

58

rdt2.2: a NAK-free protocol

§ same functionality as rdt2.1, using ACKs only
§ instead of NAK, receiver sends ACK for last pkt received OK
• receiver must explicitly include seq # of pkt being ACKed

§ duplicate ACK at sender results in same action as NAK:
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free

59

rdt2.2: Example
sender

data (1)

receiver

ACK (0) (implies a NAK)

data (0)

waiting for 0
sending #

0

waiting for 1sending
1

waiting for 0

ACK (0)

data (0)

data (1)

ACK (1)

sending #
0

Duplicate ACK
Resend old

packet

Dotted line: erroneous transmission
Solid line: error-free transmission

60

rdt3.0: channels with errors and loss
New channel assumption: underlying channel can also lose
packets (data, ACKs)
• checksum, sequence #s, ACKs, retransmissions will be of help …

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?

61

rdt3.0: channels with errors and loss
Approach: sender waits “reasonable” amount of time for ACK
§retransmits if no ACK received in this time
§if pkt (or ACK) just delayed (not lost):

• retransmission will be duplicate, but seq #s already handles this!
• receiver must specify seq # of packet being ACKed

timeout

§ use countdown timer to interrupt after “reasonable” amount of time

§ No retransmission on duplicate ACKs

62

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

rdt3.0 in action

63

rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0

pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

(ignore)
rcv ack1

ack1send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0ack0

64

Which of the following are needed for reliable data transfer with only
packet corruption (and no loss or reordering)? Use only as much as is
strictly needed.

a) Checksums
b) Checksums, ACKs, NACKs
c) Checksums, ACKs
d) Checksums, ACKs, sequence numbers
e) Checksums, ACKs, NACKs, sequence numbers

www.pollev.com/salil
65

Quiz: Reliable Data Transfer

Answer: D (RDT 2.2)

If packets (and ACKs and NACKs) could be lost which of the
following is true of RDT 2.1 (or 2.2)?

a) Reliable in-order delivery is still achieved
b) The protocol will get stuck
c) The protocol will continue making progress but may skip delivering some
messages

66

Quiz: Reliable Data Transfer

www.pollev.com/salil Answer: B

Which of the following are needed for reliable data transfer to handle
packet corruption and loss? Use only as much as is strictly needed.

a) Checksums, timeouts
b) Checksums, ACKs, sequence numbers
c) Checksums, ACKs, timeouts
d) Checksums, ACKs, timeouts, sequence numbers
e) Checksums, ACKs, NACKs, timeouts, sequence numbers

67

Quiz: Reliable Data Transfer

www.pollev.com/salil Answer: D (RDT 3.0)

Performance of rdt3.0 (stop-and-wait)

§ example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

§U sender: utilization – fraction of time sender busy sending

Dtrans = L
R

8000 bits
109 bits/sec= = 8 microsecs

• time to transmit packet into channel:

68

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0
sender receiver

RTT
first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

69

rdt3.0: stop-and-wait operation
sender receiver

Usender=
L / R

RTT
RTT

L/R

+ L / R

= 0.00027

= .008
30.008

§ rdt 3.0 protocol performance is very poor!
§ Protocol limits performance of underlying infrastructure (channel)

70

rdt3.0: pipelined protocols operation
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged

packets
• range of sequence numbers must be increased
• buffering at sender and/or receiver

• Go Back N, Selective Repeat

`` 71

Pipelining: increased utilization

first packet bit transmitted, t = 0
sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

U
sender =

.0024
30.008

= 0.00081 3L / R
RTT + L / R

=

72

Go-Back-N: sender
§ sender: “window” of up to N, consecutive transmitted but unACKed pkts
• k-bit seq # in pkt header

§ cumulative ACK: ACK(n): ACKs all packets up to, including seq # n
• on receiving ACK(n): move window forward to begin at n+1

§ timer for oldest in-flight packet
§ timeout(n): retransmit packet n and all higher seq # packets in window

73
Applets: http://media.pearsoncmg.com/aw/aw_kurose_network_2/applets/go-back-n/go-back-n.html

http://www.ccs-labs.org/teaching/rn/animations/gbn_sr/

Go-Back-N: receiver
§ ACK-only: always send ACK for correctly-received packet so far, with

highest in-order seq #
• may generate duplicate ACKs
• need only remember rcv_base

§ on receipt of out-of-order packet:
• can discard (don’t buffer) or buffer: an implementation decision
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not ACKed

Not received

Receiver view of sequence number space:

… …

74

Go-Back-N in action
send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
(re)send ack1

send pkt2
send pkt3
send pkt4
send pkt5

Xloss

pkt 2 timeout

receive pkt4, discard,
(re)send ack1

receive pkt5, discard,
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

sender window (N=4)
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

75

Selective repeat
§receiver individually acknowledges all correctly received

packets
• buffers packets, as needed, for eventual in-order delivery to upper

layer
§sender times-out/retransmits individually for unACKed packets
• sender maintains timer for each unACKed pkt

§sender window
• N consecutive seq #s
• limits seq #s of sent, unACKed packets

76

Applet: http://media.pearsoncmg.com/aw/aw_kurose_network_3/applets/SelectRepeat/SR.html

http://www.ccs-labs.org/teaching/rn/animations/gbn_sr/

Selective repeat: sender, receiver windows

77

Selective repeat: sender and receiver

data from above:
§ if next available seq # in

window, send packet

timeout(n):
§ resend packet n, restart timer

ACK(n) in [sendbase,sendbase+N]:

§ mark packet n as received
§ if n smallest unACKed packet,

advance window base to next
unACKed seq #

sender
packet n in [rcvbase, rcvbase+N-1]
§ send ACK(n)
§ out-of-order: buffer
§ in-order: deliver (also deliver

buffered, in-order packets),
advance window to next not-yet-
received packet

packet n in [rcvbase-N,rcvbase-1]
§ ACK(n)

otherwise:
§ ignore

receiver

78

Selective Repeat in action
send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

send pkt2
(but not 3,4,5)

Xloss

pkt 2 timeout

sender window (N=4)
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
send ack3

record ack3 arrived
receive pkt4, buffer,

send ack4
receive pkt5, buffer,

send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Q: what happens when ack2 arrives?

79

Selective repeat:
a dilemma!

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2
0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2
0 1 2 3 0 1 2

X
will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example:
§ seq #s: 0, 1, 2, 3 (base 4 counting)

§ window size=3

80

Selective repeat:
a dilemma!

Q: what relationship is needed
between sequence # size and
window size to avoid problem
in scenario (b)?

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2
0 1 2 3 0 1 2

X
X
X

will accept packet
with seq number 0

(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2
0 1 2 3 0 1 2

X
will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

example:
§ seq #s: 0, 1, 2, 3 (base 4 counting)

§ window size=3

§ receiver can’t
see sender side

§ receiver
behavior
identical in both
cases!

§ something’s
(very) wrong!

81

A: Sender window size <= ½ of
Sequence number space

Recap: components of a solution
v Checksums (for error detection)
v Timers (for loss detection)
v Acknowledgments

§ cumulative
§ selective

v Sequence numbers (duplicates, windows)
v Sliding Windows (for efficiency)

v Reliability protocols use the above to decide when and what to
retransmit or acknowledge

82

Which of the following is not true?

a) GBN uses cumulative ACKs, SR uses individual ACKs
b) Both GBN and SR use timeouts to address packet loss
c) GBN maintains a separate timer for each outstanding packet
d) SR maintains a separate timer for each outstanding packet
e) Neither GBN nor SR use NACKs

83

Quiz: GBN, SR

www.pollev.com/salil
Answer: C

Suppose a receiver that has received all packets up to and including
sequence number 24 and next receives packet 27 and 28. In response,
what are the sequence numbers in the ACK(s) sent out by the GBN and
SR receiver, respectively?

a) [27, 28], [28, 28]
b) [24, 24], [27, 28]
c) [27, 28], [27, 28]
d) [25, 25], [25, 25]
e) [nothing], [27, 28]

84

Quiz: GBN, SR

www.pollev.com/salil

Answer: B

85

Transport Layer Outline

3.1 transport-layer services
3.2 multiplexing and

demultiplexing
3.3 connectionless transport:

UDP
3.4 principles of reliable data

transfer

3.5 connection-oriented
transport: TCP
§ segment structure
§ reliable data transfer
§ flow control
§ connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Practical Reliability Questions

v How do the sender and receiver keep track of outstanding
pipelined segments?

v How many segments should be pipelined?
v How do we choose sequence numbers?
v What does connection establishment and teardown look like?
v How should we choose timeout values?

86

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

§ cumulative ACKs
§ pipelining:

• TCP congestion and flow control
set window size

§ connection-oriented:
• handshaking (exchange of control

messages) initializes sender,
receiver state before data exchange

§ flow controlled:
• sender will not overwhelm receiver

§ point-to-point:
• one sender, one receiver

§ reliable, in-order byte
stream:
• no “message boundaries"

§ full duplex data:
• bi-directional data flow in

same connection
• MSS: maximum segment size

87

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes

receiver willing to accept

sequence number
segment seq #: counting
bytes of data into bytestream
(not segments!)

application
data

(variable length)

data sent by
application into
TCP socket

A

acknowledgement number

ACK: seq # of next expected
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum

RST, SYN, FIN: connection
management

FSR

Urg data pointer

PUC E

C, E: congestion notification

88

89

TCP Segments

source port # dest port #

32 bits

application
data
(variable length)

Urg data pointer

F S R P A U head
len

not
used

checksum

receive window

sequence number

acknowledgement number

options (variable length)

20 Bytes

(UDP was 8)

TCP segment structure

Summary

v Multiplexing/Demultimplexing
v UDP
v Reliable Data Transfer

§ Stop-and-wait protocols
§ Sliding winding protocols

v TCP - intro
v Up Next:

§ TCP – continued in more detail
§ Congestion Control

90

