
COMP 3331/9331:
Computer Networks and

Applications
Week 8

Control Plane (Routing)
Chapter 5: Section 5.1 – 5.2, 5.6

1

5.1 introduction
5.2 routing protocols
v link state
v distance vector

v Hierarchical routing (NOT ON
EXAM)

5.6 ICMP: The Internet Control
Message Protocol

Network layer, control plane: outline

2

Two approaches to structuring network control plane:
vper-router control (traditional)
v logically centralized control (software defined networking)

Network-layer functions

3

§ forwarding: move packets from router’s
input to appropriate router output data plane

control plane§ routing: determine route taken by
packets from source to destination

Per-router control plane
Individual routing algorithm components in each and every
router interact in the control plane

Routing
Algorithm

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

1

2

0111

values in arriving
packet header

3

4

Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving
packet header

5

NOT COVERED
IN THIS COURSE

Routing protocol goal: determine
“good” paths (equivalently, routes),
from sending hosts to receiving
host, through network of routers
v path: sequence of routers packets

traverse from given initial source
host to final destination host

v “good”: least “cost”, “fastest”,
“least congested”

v routing: a “top-10” networking
challenge!

Routing protocols
mobile network

enterprise
network

national or global ISP

datacenter
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical

6

Context and Terminology
“End hosts”

“Clients”, “Users”
“End points”

“Interior Routers”

“Border Routers”

“Autonomous System (AS)” or “Domain”
Region of a network under a single administrative entity

“Route” or “Path”

7

Internet Routing

v Internet Routing works at two levels

v Each AS runs an intra-domain routing protocol that
establishes routes within its domain
§ AS -- region of network under a single administrative entity
§ Link State, e.g., Open Shortest Path First (OSPF)
§ Distance Vector, e.g., Routing Information Protocol (RIP)

v ASes participate in an inter-domain routing protocol that
establishes routes between domains
§ Path Vector, e.g., Border Gateway Protocol (BGP)

8

Graph abstraction: link costs

9

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

graph: G = (N,E)

ca,b: cost of direct link connecting a and b
e.g., cw,z = 5, cu,z = ∞

cost defined by network operator:
could always be 1, or inversely
related to bandwidth, or inversely
related to congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Routing algorithm classification

10
global or decentralized information?

global: all routers have complete
topology, link cost info
• “link state” algorithms

decentralized: iterative process of
computation, exchange of info with neighbors
• routers initially only know link costs to

attached neighbors
• “distance vector” algorithms

How fast
do routes
change?

dynamic: routes change
more quickly
• periodic updates or in

response to link cost
changes

static: routes change
slowly over time

5.1 introduction
5.2 routing protocols
v link state
v distance vector

v hierarchical routing

5.6 ICMP: The Internet Control
Message Protocol

Network layer, control plane: outline

11

Link State Routing
v Each node maintains its local “link state” (LS)

§ i.e., a list of its directly attached links and their costs

(R1,R2, 2)
(R1,R4, 3)
(R1,R5, 2)

Host A

Host B
Host E

Host D

Host C

R1 R2

R3

R4

R5

R7R6
12

2

2
3

Link State Routing
v Each node maintains its local “link state” (LS)
v Each node floods its local link state

§ on receiving a new LS message, a router forwards the message
to all its neighbors other than the one it received the message from

Host A

Host B
Host E

Host D

Host C

R1 R2

R3

R4

R5

R7R6

(R1,R2, 2)
(R1, R4, 3)
(R1, R5, 2)

(R1,R2, 2)
(R1, R4, 3)
(R1, R5, 2)

(R1,R2, 2)
(R1, R4, 3)
(R1, R5, 2)

(R1,R2, 2)
(R1, R4, 3)
(R1, R5, 2)

(R1,R2, 2)
(R1, R4, 3)
(R1, R5, 2)

(R1,R2, 2)
(R1, R4, 3)
(R1, R5, 2)

(R1,R2, 2)
(R1, R4, 3)
(R1, R5, 2)

(R1,R2, 2)
(R1, R4, 3)
(R1, R5, 2)

(R1,R2, 2)
(R1, R4, 3)
(R1, R5, 2)

(R1,R2, 2)
(R1, R4, 3)
(R1, R5, 2)

13

Flooding LSAs

v Routers transmit Link State Advertisement (LSA) on links
§ A neighbouring router forwards out on all links except incoming
§ Keep a copy locally; don’t forward previously-seen LSAs

v Challenges
§ Packet loss
§ Out of order arrival

v Solutions
§ Acknowledgements and retransmissions
§ Sequence numbers
§ Time-to-live for each packet

14

Link State Routing
v Each node maintains its local “link state” (LS)
v Each node floods its local link state
v Eventually, each node learns the entire network topology

§ Can use Dijkstra’s to compute the shortest paths between nodes

Host A

Host B
Host E

Host D

Host C

R1 R2

R3

R4

R5

R7R6

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

15

Dijkstra’s link-state routing algorithm

16

§ centralized: network topology, link
costs known to all nodes
• accomplished via “link state broadcast”
• all nodes have same info

§ computes least cost paths from one
node (“source”) to all other nodes
• gives forwarding table for that node

§ iterative: after k iterations, know
least cost path to k destinations

§ cx,y: direct link cost from
node x to y; = ∞ if not direct
neighbors

§ D(v): current estimate of cost
of least-cost-path from
source to destination v

§ p(v): predecessor node along
path from source to v

§ N': set of nodes whose least-
cost-path definitively known

notation

Dijkstra’s link-state routing algorithm

17

1 Initialization:
2 N' = {u} /* compute least cost path from u to all other nodes */
3 for all nodes v
4 if v adjacent to u /* u initially knows direct-path-cost only to direct neighbors
*/
5 then D(v) = cu,v /* but may not be minimum cost!
*/
6 else D(v) = ∞
7
8 Loop
9
10
11
12
13
14
15 until all nodes in N'

find w not in N' such that D(w) is a minimum
add w to N'
update D(v) for all v adjacent to w and not in N' :

D(v) = min (D(v), D(w) + cw,v)
/* new least-path-cost to v is either old least-cost-path to v or known
least-cost-path to w plus direct-cost from w to v */

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

Set N’
A

D(B),p(B)
2,A

D(C),p(C)
5,A

D(D),p(D)
1,A

D(E),p(E) D(F),p(F)

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

∞ ∞

1 Initialization:
2 N’ = {A};
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v);
6 else D(v) = ;
…

∞

18

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

Set N’
A

D(B),p(B)
2,A

D(C),p(C)
5,A

…
8 Loop
9 find w not in N’ s.t. D(w) is a minimum;
10 add w to N’;
11 update D(v) for all v adjacent

to w and not in N’:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in N’;

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

D(D),p(D)
1,A

D(E),p(E) D(F),p(F)
∞ ∞

19

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

Set N’
A
AD

D(B),p(B)
2,A

D(C),p(C)
5,A

D(D),p(D)
1,A

D(E),p(E) D(F),p(F)

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

∞ ∞

…
8 Loop
9 find w not in N’ s.t. D(w) is a minimum;
10 add w to N’;
11 update D(v) for all v adjacent

to w and not in N’:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in N’;

20

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

Set N’
A
AD

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

∞ ∞

…
8 Loop
9 find w not in N’ s.t. D(w) is a minimum;
10 add w to N’;
11 update D(v) for all v adjacent

to w and not in N’:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in N’;

2, A

21

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

Set N’
A
AD
ADE

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

∞ ∞

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5
…
8 Loop
9 find w not in N’ s.t. D(w) is a minimum;
10 add w to N’;
11 update D(v) for all v adjacent

to w and not in N’:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in N’;

2, A
2, A

22

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

Set N’
A
AD
ADE
ADEB

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

∞ ∞

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5
…
8 Loop
9 find w not in N’ s.t. D(w) is a minimum;
10 add w to N’;
11 update D(v) for all v adjacent

to w and not in N’:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in N’;

2,A
2,A

3,E 4,E

23

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

Set N’
A
AD
ADE
ADEB
ADEBC

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

∞ ∞

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5
…
8 Loop
9 find w not in N’ s.t. D(w) is a minimum;
10 add w to N’;
11 update D(v) for all v adjacent

to w and not in N’:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in N’;

4,E
4,E

3,E
2,A
2,A

24

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

Set N’
A
AD
ADE
ADEB
ADEBC
ADEBCF

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

∞ ∞

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5
…
8 Loop
9 find w not in N’ s.t. D(w) is a minimum;
10 add w to N’;
11 update D(v) for all v adjacent

to w and not in N’:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in N’;

4,E
4,E

3,E

2,A
2,A

25

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

Set N’
A
AD
ADE
ADEB
ADEBC
ADEBCF

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

∞ ∞

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5
To determine path A ® C (say),
work backward from C via p(v)

26

27

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

A

ED

CB

F

resulting least-cost-path tree from A: resulting forwarding table in A:

B
C
D
E
F

(A,B)
(A,D)
(A,D)
(A,D)
(A,D)

destination outgoing link

route from A to B directly

route from A to all
other destinations
via D

Example: Dijkstra’s Algorithm

Dijkstra’s algorithm: another example

28

w3

4

v

x

u

5

3
7 4

y

8

z
2

7

9Step N'
D(v),
p(v)

0

1

2
3

4

5

D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w6,w 5,u

14,x 11,w 6,wuwx

uwxv 14,x 10,v

uwxvy 12,y

notes:
§ construct least-cost-path tree by tracing predecessor nodes
§ ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z

Dijkstra’s algorithm: discussion

29

algorithm complexity: n nodes
§ each of n iteration: need to check all nodes, w, not in N

§ n(n+1)/2 comparisons: O(n2) complexity

§ more efficient implementations possible: O(nlogn)

message complexity:
§ each router must broadcast its link state information to other n routers

§ efficient (and interesting!) broadcast algorithms: O(n) link crossings to disseminate a
broadcast message from one source

§ each router’s message crosses O(n) links: overall message complexity: O(n2)

Dijkstra’s algorithm: oscillations possible

30

§ when link costs depend on traffic volume, route oscillations possible

a

d

c

b
1 1+e

e0

e

1
1

0 0

initially

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00
1+e 1

a

d

c

b

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e1
0 0

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00
1+e 1

§ sample scenario:
• routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
• link costs are directional, and volume-dependent

e

1 1

e

1 1

e

1 1

5.1 introduction
5.2 routing protocols
v link state
v distance vector

v hierarchical routing

5.6 ICMP: The Internet Control
Message Protocol

Network layer, control plane: outline

31

Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm

32

Let Dx(y): cost of least-cost path from x to y.
Then:

Dx(y) = minv { cx,v + Dv(y) }

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v

Bellman-Ford Example

33

u

y

z
2

2
1

3

1

1

2

5
3

5

Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),
cu,x + Dx(z),
cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,

1 + 3,
5 + 3} = 4

node achieving minimum (x) is
next hop on estimated least-cost
path to destination (z)

Distance vector algorithm

34

key idea:
§ from time-to-time, each node sends its own distance vector estimate

to neighbors

§ under minor, natural conditions, the estimate Dx(y) converge to
the actual least cost dx(y)

Dx(y) ← minv{cx,v + Dv(y)} for each node y ∊ N

§ when x receives new DV estimate from any neighbor, it updates its
own DV using B-F equation:

Distance vector algorithm:

35

iterative, asynchronous: each local
iteration caused by:

§ local link cost change

§ DV update message from neighbor
wait for (change in local link
cost or DV from neighbor)

each node:

distributed, self-stopping: each
node notifies neighbors only when
its DV changes
§ neighbors then notify their

neighbors – only if necessary
§ no notification received; no

actions taken!

recompute DV estimates using
DV received from neighbor

if DV to any destination has
changed, notify neighbors

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector: example

36

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0
§ All nodes have

distance
estimates to
nearest
neighbors (only)

A few asymmetries:
§ missing link
§ larger cost

d e f

a b c

§ All nodes send
their local
distance vector
to their
neighbors

Distance vector example: iteration

37

All nodes:
§ receive distance

vectors from
neighbors

§ compute their
new local
distance vector

§ send their new
local distance
vector to
neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

Distance vector example: iteration

38

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance

vectors from
neighbors

§ compute their
new local
distance vector

§ send their new
local distance
vector to
neighbors

t=1

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

39

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance

vectors from
neighbors

§ compute their
new local
distance vector

§ send their new
local distance
vector to
neighbors

t=1

Distance vector example: iteration

40

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance

vectors from
neighbors

§ compute their
new local
distance vector

§ send their new
local distance
vector to
neighbors

t=2

Distance vector example: iteration

41

g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
§ receive distance

vectors from
neighbors

§ compute their
new local
distance vector

§ send their new
local distance
vector to
neighbors

t=2

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

42

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance

vectors from
neighbors

§ compute their
new local
distance vector

§ send their new
local distance
vector to
neighbors

t=2

Distance vector example: iteration

43

…. and so on

Let’s next take a look at the iterative computations at nodes

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

44

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ b receives DVs
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation
DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

45

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
§ b receives DVs

from a, c, e,
computes:

a b c

d e f

DV in b:
Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)} = min{8,∞,∞} = 8
Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)} = min{∞,1,∞} = 1
Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)} = min{9,2,∞} = 2

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)} = min{∞,∞,2} = 2

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)} = min{∞, ∞, ∞} = ∞
Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)} = min{∞, ∞, 2} = 2

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)} = min{∞,∞,1} = 1

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)} = min{∞, ∞, ∞} = ∞

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

46

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ c receives DVs
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation

47

g h i

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ c receives DVs
from b
computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9
Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1
Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞
Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2
Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞
Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞
Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = 2
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute

Distance vector example: computation

48

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ e receives DVs
from b, d, f, h

a b c

DV in f:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = 0
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = 0
Dc(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e
at t=1?

compute

Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c
c’s state at t=0 has propagated to b, and
may influence distance vector
computations up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence distance
vector computations up to 2 hops away,
i.e., at b and now at a, e as well

t=2

c’s state at t=0 may influence distance
vector computations up to 3 hops away,
i.e., at b,a,e and now at c,f,h as well

t=3

c’s state at t=0 may influence distance
vector computations up to 4 hops away,
i.e., at b,a,e, c, f, h and now at g,i as well

t=4

Iterative communication, computation steps diffuses information through network:

t=1
t=2

t=3

t=4

Problems with Distance Vector

Ø A number of problems can occur in a network using distance
vector algorithm

Ø Most of these problems are caused by slow convergence or
routers converging on incorrect information

Ø Convergence is the time during which all routers come to an
agreement about the best paths through the internetwork
• whenever topology changes there is a period of instability in the network

as the routers converge

Ø Reacts rapidly to good news, but leisurely to bad news

50

DV: Link Cost Changes

A C
A 4 6
C 9 1

Node B

A B
A 50 5
B 54 1

Node C

Link cost changes here

A C
A 1 6
C 6 1

A B
A 50 5
B 54 1

A C
A 1 6
C 3 1

A B
A 50 5
B 51 1

A C
A 1 6
C 3 1

A B
A 50 2
B 51 1

B C
B 4 51
C 5 50

Node A B C
B 1 51
C 2 50

B C
B 1 51
C 2 50

B C
B 1 51
C 2 50

A C
A 1 3
C 3 1

A B
A 50 2
B 51 1

B C
B 1 51
C 2 50

Stable state A-B changed A sends its
DV to B, C

B sends its
DV to A, C

C sends its
DV to A, B

A C
14

50

B1

“good news travels fast”

to

via

Note: none of B’s
paths use link (A,C)deduct 3 from distances

distB(A,*) and distA(B,*)

51

NOTE: DIFFERENT REPRESENTATION FROM BEFORE. YELLOW ENTRIES ARE THE DV

DV: Link Cost Changes

A C
A 4 6
C 9 1

Node B

A B
A 50 5
B 54 1

Node C

Link cost changes here

A C
A 60 6
C 65 1

A B
A 50 5
B 54 1

B C
B 4 51
C 5 50

Node A B C
B 60 51
C 61 50

Stable state A-B changed

A C
14

50

B60

to

via

add 56 to distances
distB(A,*) and distA(B,*)

52

DV: Link Cost Changes

A C
A 4 6
C 9 1

Node B

A B
A 50 5
B 54 1

Node C

Link cost changes here

A C
A 60 6
C 65 1

A B
A 50 5
B 54 1

A C
A 60 6
C 110 1

A B
A 50 5
B 101 1

A C
A 60 6
C 110 1

A B
A 50 7
B 101 1

B C
B 4 51
C 5 50

Node A B C
B 60 51
C 61 50

B C
B 60 51
C 61 50

B C
B 60 51
C 61 50

A C
A 60 8
C 110 1

A B
A 50 7
B 101 1

B C
B 60 51
C 61 50

Stable state A-B changed A sends its
DV to B, C

B sends its
DV to A, C

C sends its
DV to A, B

A C
14

50

B60

“bad news travels slowly”
(not yet converged)

to

via

This is the “Counting to Infinity” Problem

53

The “Poisoned Reverse” Rule

v Heuristic to avoid count-to-infinity

v If B routes via C to get to A:
§ B tells C its (B’s) distance to A is infinite

(so C won’t route to A via B)

54

DV: Poisoned Reverse

A C
A 4 6
C 9 1

Node B

A B
A 50 5
B 54 1

Node C

B C
B 4 51
C 5 50

Node A

Stable state

A C
14

50

B

to

via

If B routes through C to get to A:
B tells C its (B’s) distance to A is infinite

∞

∞

Mindist

4
5

Mindist

4
5∞

Mindist

5
1

Mindist

5
1

∞

55

∞

∞

DV: Poisoned Reverse

A C
A 4 6
C 9 1

Node B

A B
A 50 5
B 54 1

Node C

Link cost changes here

A C
A 60 6
C 65 1

A B
A 50 5
B 54 1

B C
B 4 51
C 5 50

Node A B C
B 60 51
C 61 50

Stable state A-B changed

A C
14

50

B60

to

via

If B routes through C to get to A:
B tells C its (B’s) distance to A is infinite

∞

∞

56

DV: Poisoned Reverse

A C
A 4 6
C 9 1

Node B

A B
A 50 5
B 54 1

Node C

Link cost changes here

A C
A 60 6
C 65 1

A B
A 50 5
B 54 1

A C
A 60 6
C 110 1

A B
A 50 5
B 101 1

A C
A 60 6
C 110 1

A B
A 50 7
B 101 1

B C
B 4 51
C 5 50

Node A B C
B 60 51
C 61 50

B C
B 60 51
C 61 50

B C
B 60 51
C 61 50

Stable state A-B changed A sends its
DV to B, C

B sends its
DV to A, C

A C
14

50

B60

to

via

If B routes through C to get to A:
B tells C its (B’s) distance to A is infinite

∞

∞ ∞

∞ ∞

∞

∞

∞

57

DV: Poisoned Reverse

A C
A 4 6
C 9 1

Node B

A B
A 50 5
B 54 1

Node C

Link cost changes here

A C
A 60 6
C 65 1

A B
A 50 5
B 54 1

A C
A 60 6
C 110 1

A B
A 50 5
B 101 1

A C
A 60 6
C 110 1

A B
A 50 61
B 101 1

B C
B 4 51
C 5 50

Node A B C
B 60 51
C 61 50

B C
B 60 51
C 61 50

B C
B 60 51
C 61 50

Stable state A-B changed A sends its
DV to B, C

B sends its
DV to A, C

A C
14

50

B60

to

via

If B routes through C to get to A:
B tells C its (B’s) distance to A is infinite

∞

∞ ∞

∞ ∞

∞

∞

∞

58

DV: Poisoned Reverse

A C
A 4 6
C 9 1

Node B

A B
A 50 5
B 54 1

Node C

Link cost changes here

A C
A 60 6
C 65 1

A B
A 50 5
B 54 1

A C
A 60 6
C 110 1

A B
A 50 5
B 101 1

A C
A 60 6
C 110 1

A B
A 50 61
B 101 1

B C
B 4 51
C 5 50

Node A B C
B 60 51
C 61 50

B C
B 60 51
C 61 50

B C
B 60 51
C 61 50

A B
A 50 61
B 101 1

B C
B 60 51
C 61 50

Stable state A-B changed A sends its
DV to B, C

B sends its
DV to A, C

C sends its
DV to A, B

A C
14

50

B60

to

via

If B routes through C to get to A:
B tells C its (B’s) distance to A is infinite

∞

∞ ∞

∞ ∞

∞

∞

∞ ∞

A C
A 60 51
C 110 1

Converges after C receives
another update from B

∞

59

Will Poison-Reverse Completely Solve
the Count-to-Infinity Problem?

A C
1

B

D

1

1 1
1 1

2 2

∞

∞ ∞

100

100 100
3

∞

4

∞ 4

5

6

Numbers in blue denote the best cost
to destination D advertised along the link

60

Comparison of LS and DV algorithms

61

message complexity
LS: n routers, O(n2) messages sent
DV: exchange between neighbors;

convergence time varies

speed of convergence
LS: O(n2) algorithm, O(n2) messages
• may have oscillations

DV: convergence time varies
• may have routing loops
• count-to-infinity problem

robustness: what happens if router
malfunctions, or is compromised?

LS:
• router can advertise incorrect link cost
• each router computes only its own

table

DV:
• DV router can advertise incorrect path

cost (“I have a really low cost path to
everywhere”): black-holing

• each router’s table used by others:
error propagate thru network

Real Protocols

Link State

Open Shortest Path First
(OSPF)

Intermediate system to
intermediate system (IS-IS)

Distance Vector

Routing Information
Protocol (RIP)

Interior Gateway Routing
Protocol (IGRP-Cisco)

Border Gateway Protocol
(BGP) - variant

62

Quiz: Link-state routing

v In link state routing, each node sends information of its direct links
(i.e., link state) to ________?

A. Immediate neighbours
B. All nodes in the network
C. Any one neighbor
D. No one

63

www.pollev.com/salil

Answer: B
Answer: B

Quiz: Distance-vector routing

v In distance vector routing, each node shares its distance table with
________?

A. All Immediate neighbours
B. All nodes in the network
C. Any one neighbor
D. No one

64

www.pollev.com/salil

Answer: A

Answer: A

Quiz: Distance-vector routing

v Which of the following is true of distance vector routing?

A. Convergence delay depends on the topology (nodes and links) and link
weights

B. Convergence delay depends on the number of nodes and links
C. Each node knows the entire topology
D. A and C
E. B and C

65

www.pollev.com/salil
Answer: A

Answer: A

5.1 introduction
5.2 routing protocols
v link state
v distance vector

v hierarchical routing

5.6 ICMP: The Internet Control
Message Protocol

Network layer, control plane: outline

Self study (not on
exam)

66

ICMP: Internet Control Message Protocol

v Used by hosts & routers to communicate network level
infromation
§ Error reporting: unreachable host, network, port
§ Echo request/reply (used by ping)

v Works above IP layer
§ ICMP messages carried in IP datagrams

v ICMP message: type, code plus IP header and first 8 bytes of IP
datagram payload causing error

IP Header IP HeaderICMP
Header

8
Bytes

Contains source
address, checksum etc.

Contains TCP/UDP
port numbers

67

ICMP: Internet Control Message Protocol

Type Code Description
0 0 echo reply(ping)
3 0 dest. network unreachable
3 1 dest host unreachable
3 3 dest port unreachable
3 4 frag needed; DF set
8 0 echo request(ping)
11 0 TTL expired
11 1 frag reassembly time exceeded
12 0 bad IP header

68

Traceroute and ICMP
Ø Source sends series of

UDP segments to dest
• first set has TTL =1
• second set has TTL=2, etc.
• unlikely port number

Ø When nth set of
datagrams arrives to nth
router:
• router discards datagrams
• and sends source ICMP

messages (type 11, code 0)
• ICMP messages includes IP

address of router

Ø when ICMP messages
arrives, source records
RTTs

stopping criteria:
Ø UDP segment eventually

arrives at destination host
Ø destination returns ICMP
“port unreachable”
message (type 3, code 3)

Ø source stops

3 probes

3 probes

3 probes

69

Summary

v Network Layer: Data Plane
§ Overview
§ IP

v Network Layer: Control Plane
§ Routing Protocols

• Link—state
• Distance Vector

§ ICMP

70

