
Application Layer (DNS, P2P, Video
Streaming and CDN)

Computer Networks and Applications

Week 3
COMP 3331/COMP 9331

Reading Guide: Chapter 2, Sections 2.4 -2.7

2. Application Layer: outline

2.1 principles of network applications
2.2 Web and HTTP
2.3 electronic mail

§ SMTP
2.4 DNS

2.5 P2P applications
2.6 video streaming and content

distribution networks (CDNs)
2.7 socket programming with

UDP and TCP

2

A nice overview https://www.thegeeksearch.com/beginners-guide-to-dns/

DNS: Domain Name System

3

people: many identifiers:
• SSN, name, passport #

Internet hosts, routers:
• IP address (32 bit) - used for

addressing datagrams
• “name”, e.g., cs.umass.edu -

used by humans
Q: how to map between IP

address and name, and vice
versa ?

Domain Name System:
§ distributed database

implemented in hierarchy of
many name servers

§ application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)
• note: core Internet function,

implemented as application-
layer protocol

• complexity at network’s “edge”

DNS: History
v Initially all host-address mappings were in a hosts.txt file (in /etc/hosts):

§ Maintained by the Stanford Research Institute (SRI)
§ Changes were submitted to SRI by email
§ New versions of hosts.txt periodically FTP’d from SRI
§ An administrator could pick names at their discretion

v As the Internet grew this system broke down:
§ SRI couldn’t handle the load; names were not unique; hosts had inaccurate copies of

hosts.txt

v The Domain Name System (DNS) was invented to fix this

4

Jon Postel

http://www.wired.com/2012/10/joe-postel/

DNS: services, structure

5

Q: Why not centralize DNS?
§ single point of failure
§ traffic volume
§ distant centralized database
§ maintenance

DNS services
§ hostname to IP address

translation
§ host aliasing

• canonical, alias names
§ mail server aliasing
§ load distribution

• replicated Web servers:
many IP addresses
correspond to one name

A: doesn‘t scale!
§ Comcast DNS servers

alone: 600B DNS queries
per day

Goals

v No naming conflicts (uniqueness)
v Scalable

§ many names
§ (secondary) frequent updates

v Distributed, autonomous administration
§ Ability to update my own (domains’) names
§ Don’t have to track everybody’s updates

v Highly available
v Lookups should be fast

6

Key idea: Hierarchy

Three intertwined hierarchies

§ Hierarchical namespace
• As opposed to original flat namespace

§ Hierarchically administered
• As opposed to centralised

§ (Distributed) hierarchy of servers
• As opposed to centralised storage

7

Hierarchical Namespace

v “Top Level Domains” are at the top
v Domains are sub-trees

§ E.g: .edu., berkeley.edu., eecs.berkeley.edu.
v Name is leaf-to-root path

§ instr.eecs.berkeley.edu.
v Depth of tree is arbitrary (limit 128)
v Name collisions trivially avoided

§ each domain is responsible

root

edu com gov mil org net uk fr

berkeley ucla

eecs sims

instr

…

8

9

Hierarchical Administration

root

edu com gov mil org net uk fr

berkeley ucla

eecs sims

instr

root

edu com gov mil org net uk fr

berkeley

eecs sims
§ A zone corresponds to a distinct contiguous portion of the

DNS name space that is managed by an administrative authority

§ E.g., UCB controls names: *.berkeley.edu and *.sims.berkeley.edu

v E.g., EECS controls names: *.eecs.berkeley.edu

Authoritative NS

Server Hierarchy

v Top of hierarchy: Root servers
§ Location hardwired into other servers

v Next Level: Top-level domain (TLD) servers
§ .com, .edu, etc. (several new TLDs introduced recently)
§ Managed professionally

v Bottom Level: Authoritative DNS servers
§ Store the name-to-address mapping
§ Maintained by the corresponding administrative authority

10

Server Hierarchy

v Each server stores a (small!) subset of the total DNS database

v An authoritative DNS server stores “resource records” for all
DNS names in the domain that it has authority for

v Each server can discover the server(s) that are responsible for
the other portions of the hierarchy
§ Every server knows the root server(s)
§ Root server(s) knows about all top-level domains

11

12

DNS: a distributed, hierarchical database

… …

.edu

TLDs = Top Level Domains
NS

Root NS

Authoritative NS

au

edu

unsw

Titanium
washington.edu

Local NS

robot.cs.washington.edu.

cse

Credits: Prof David Wetherall, UoW

pk

DNS: root name servers

13

§ official, contact-of-last-resort
by name servers that can not
resolve name

§ incredibly important Internet
function

• Internet couldn’t function without
it!

• DNSSEC – provides security
(authentication and message
integrity)

§ ICANN (Internet Corporation for
Assigned Names and Numbers)
manages root DNS domain

13 logical root name “servers”
worldwide each “server” replicated
many times (~200 servers in US)

14

DNS: root name servers

www.root-servers.org

TLD: authoritative servers

15

Top-Level Domain (TLD) servers:
§ responsible for .com, .org, .net, .edu, .aero, .jobs, .museums,

and all top-level country domains, e.g.: .cn, .uk, .fr, .ca, .jp
§ Network Solutions: authoritative registry for .com, .net

TLD
§ Educause: .edu TLD

Authoritative DNS servers:
§ organization’s own DNS server(s), providing authoritative hostname

to IP mappings for organization’s named hosts
§ can be maintained by organization or service provider

Local DNS name servers

16

§ does not strictly belong to hierarchy
§ each ISP (residential ISP, company, university) has one

• also called “default name server”
§ Hosts learn server via a host configuration protocol (e.g., DHCP)
§ Client application

• Obtain hostname (e.g., from URL)
• Do gethostbyname() to trigger DNS request to its local DNS server

§ when host makes DNS query, query is sent to its local DNS server
• has local cache of recent name-to-address translation pairs (but may be

out of date!)
• acts as proxy, forwards query into hierarchy

DNS name resolution: iterated query

17

Example: host at
engineering.nyu.edu wants IP
address for gaia.cs.umass.edu
Iterated query:
§ contacted server

replies with name of
server to contact

§ “I don’t know this
name, but ask this
server”

requesting host at
engineering.nyu.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.nyu.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

DNS name resolution: recursive query

18

requesting host at
engineering.nyu.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.nyu.edu

1

2 3

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS serverRecursive query:
§ puts burden of

name resolution on
contacted name
server

§ heavy load at
upper levels of
hierarchy?

Example: host at
engineering.nyu.edu wants IP
address for gaia.cs.umass.edu

Caching, Updating DNS Records

19

§ once (any) name server learns mapping, it caches mapping
• cache entries timeout (disappear) after some time (TTL)
• TLD servers typically cached in local name servers

• thus root name servers not often visited

§ cached entries may be out-of-date (best-effort name-to-
address translation!)
• if name host changes IP address, may not be known Internet-wide until

all TTLs expire!
§ update/notify mechanisms proposed IETF standard

• RFC 2136
§ Negative caching (optional)

• Remember things that don’t work
• E.g., misspellings like www.cnn.comm and www.cnnn.com

http://www.cnn.comm/
http://www.cnnn.com/

DNS records

20

DNS: distributed database storing resource records (RR)

type=NS
§ name is domain (e.g.,

foo.com)
§ value is hostname of

authoritative name server
for this domain

RR format: (name, value, type, ttl)

type=A
§ name is hostname
§ value is IP address

type=CNAME
§ name is alias name for some

“canonical” (the real) name
§ www.ibm.com is really

servereast.backup2.ibm.com
§ value is canonical name

type=MX
§ value is name of mailserver

associated with name

DNS protocol messages

21

DNS query and reply messages, both have same format:

message header:
§ identification: 16 bit # for query,

reply to query uses same #
§ flags:

• query or reply
• recursion desired
• recursion available
• reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

22

DNS query and reply messages, both have same format:

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

name, type fields for a
query

RRs in response to query
records for authoritative

servers
additional “ helpful” info that

may be used

DNS protocol messages

23

An Example Try this out yourself. Part of Lab 3

Inserting records into DNS

24

Example: new startup “Network Utopia”
§ register name networkuptopia.com at DNS registrar (e.g.,

Network Solutions)
• provide names, IP addresses of authoritative name server (primary and

secondary)
• registrar inserts NS, A RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

§ create authoritative server locally with IP address 212.212.212.1
• Containing type A record for www.networkuptopia.com
• Containing type MX record for networkutopia.com

Updating DNS records

v Remember that old records may be cached in other
DNS servers (for up to TTL)

v General guidelines
§ Record the current TTL value of the record
§ Lower the TTL of the record to a low value (e.g., 30

seconds)
§ Wait the length of the previous TTL
§ Update the record
§ Wait for some time (e.g., 1 hour)
§ Change the TTL back to your previous time

25

Reliability

v DNS servers are replicated (primary/secondary)
§ Name service available if at least one replica is up
§ Queries can be load-balanced between replicas

v Usually, UDP used for queries
§ Need reliability: must implement this on top of UDP
§ Spec supports TCP too, but not always implemented

v DNS uses port 53
v Try alternate servers on timeout

§ Exponential backoff when retrying same server
v Same identifier for all queries

§ Don’t care which server responds

26

CDN example (more later)

27

Many well-known sites are
hosted by CDNs. A simple way
to check using dig is shown
here.

WWW vs non-WWW domains

28

v E.g., www.metalhead.com or metalhead.com
v Non-www referred to as apex or naked domains (metalhead.com)
v Technically either can serve as primary (for search engines) and the other is

redirected to primary (HTTP 301)
v There are 2 main advantages of using www

§ DNS requires apex domains to always point to type A and that CNAME record cannot coexist
with other RR types

§ With www domains, offloading to a CDN is easy:
• www.metalhead.com CNAME somecdn.com
• metalhead.com A 156.23.34.252

• Note: Some CDN providers have workarounds for the above
§ Cookies of the apex domain are automatically passed down to sub-domains (metalhead.com to

static.metalhead.com and mail.metalhead.com)
• Unnecessary cookies hurt performance
• Also, a security issue (out of scope of our discussion)

More reading at: https://www.bjornjohansen.com/www-or-not

Do you trust your DNS server?

v Censorship

v Logging
§ IP address, websites visited, geolocation data and more
§ E.g., Google DNS:

29

https://developers.google.com/speed/public-dns/privacy

https://wikileaks.org/wiki/Alternative_DNS

DNS security

30

DDoS attacks
§ bombard root servers with

traffic
• not successful to date
• traffic filtering
• local DNS servers cache IPs

of TLD servers, allowing root
server bypass

§ bombard TLD servers
• potentially more dangerous

Redirect attacks
§ man-in-middle

• intercept DNS queries
§ DNS poisoning

• send bogus relies to DNS
server, which caches

Exploit DNS for DDoS
§ send queries with spoofed

source address: target IP
§ requires amplification

DNSSEC
[RFC 4033]

DNS Cache Poisoning

v Suppose you are a bad guy and you control the name server
for drevil.com. Your name server receives a request to resolve
www.drevil.com. and it responds as follows:

;; QUESTION SECTION:
;www.drevil.com. IN A

;; ANSWER SECTION:
www.drevil.com 300 IN A 129.45.212.42

;; AUTHORITY SECTION:
drevil.com 86400 IN NS dns1.drevil.com.
drevil.com 86400 IN NS google.com

;; ADDITIONAL SECTION:
google.com 600 IN A 129.45.212.222

v Solution: Do not allow DNS servers to cache IP address mappings
unless they are from authoritative name servers

31

A drevil.com machine, not google.com

DNS Cache Poisoning Test - https://www.grc.com/dns/dns.htm

DoH (RFC 8484) and DoT (RFC 7858)
v DoT: DNS over Transport Layer Security (TLS)
v DoH: DNS over HTTPS (or HTTP2)
v Increase user privacy and security
v DoT: port 853, DoH: port 443
v DoH traffic masked with other HTTPS traffic
v Cloudflare, Google, etc. have publicly accessible DoT resolvers and OS

support is also available
v Chrome and Mozilla support DoH, OS support coming soon (or already

there)
v DoT: https://developers.google.com/speed/public-dns/docs/dns-over-tls
v DoH: https://developers.cloudflare.com/1.1.1.1/dns-over-https

32

NOT ON EXAM

https://developers.google.com/speed/public-dns/docs/dns-over-tls
https://developers.cloudflare.com/1.1.1.1/dns-over-https

Quiz: DNS

v If a local DNS server has no clue about where to find the address for a
hostname then the_____

a) Server starts crying

b) Server asks the root DNS server

c) Server asks its neighbouring DNS server

d) Request is not processed

33
www.pollev.com/salil

Answer: B

v Which of the following are respectively maintained by the client-
side ISP and the domain name owner?

a) Root DNS server, Top-level domain DNS server
b) Root DNS server, Local DNS server
c) Local DNS server, Authoritative DNS server
d) Top-level domain DNS server, Authoritative DNS server
e) Authoritative DNS server, Top-level domain DNS server

34

Quiz: DNS

www.pollev.com/salil

Answer: C

v Suppose you open your email program and send an email to
salil@unsw.edu.au, your email program will trigger which type
of DNS query?

a) A
b) NS
c) CNAME
d) MX
e) All of the above

35

Quiz: DNS

www.pollev.com/salil

Answer: D

mailto:salil@unsw.edu.au

v You open your browser and type www.pollev.com. The minimum
number of DNS requests sent by your local DNS server to obtain
the corresponding IP address is:

A. 0

B. 1

C. 2

D. 3

E. 42

36

Quiz: DNS

www.pollev.com/salil

Answer: A

http://www.zeetings.com/

2. Application Layer: outline

2.1 principles of network applications
2.2 Web and HTTP
2.3 electronic mail

§ SMTP
2.4 DNS

2.5 P2P applications
2.6 video streaming and content

distribution networks (CDNs)
2.7 socket programming with

UDP and TCP

37

mobile network

home network

enterprise
network

national or global ISP

local or
regional
ISP

datacenter
network

content
provider
network

Peer-to-peer (P2P) architecture
§ no always-on server
§ arbitrary end systems directly

communicate
§ peers request service from other

peers, provide service in return to
other peers
• self scalability – new peers bring new

service capacity, and new service demands
§ peers are intermittently connected

and change IP addresses
• complex management

§ examples: P2P file sharing (BitTorrent),
streaming (KanKan), VoIP (Skype),
Cryptocurrency (Bitcoin) 38

39

File distribution: client-server vs P2P
Q: how much time to distribute file (size F) from one

server to N peers?
• peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
bandwidth)

file, size F

us: server
upload capacity

ui: peer i upload
capacity

di: peer i
download capacityu2 d2

u1 d1

di

ui

40

File distribution time: client-server
§ server transmission: must

sequentially send (upload) N file
copies:
• time to send one copy: F/us
• time to send N copies: NF/us

§ client: each client must
download file copy
• dmin = min client download rate
• min client download time: F/dmin

us

network
di

ui

F

increases linearly in N

time to distribute F
to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

File distribution time: P2P
§ server transmission: must upload

at least one copy:
• time to send one copy: F/us

§ client: each client must
download file copy
• min client download time: F/dmin

us

network
di

ui

F

§ clients: as aggregate must download NF bits
• max upload rate (limiting max download rate) is us +
Sui

time to distribute F
to N clients using

P2P approach
DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

… but so does this, as each peer brings service capacity
increases linearly in N …

41

Client-server vs. P2P: example
client upload rate = u, F/u = 1 hour, us = 10u

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

42

P2P file distribution: BitTorrent
§ file divided into 256Kb chunks
§ peers in torrent send/receive file chunks

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a
file

Alice arrives …
… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

43

Torrent files

v Contains address of trackers for the file
§ Where can I find other peers?

v Contain a list of file chunks and their cryptographic hashes
§ This ensures that chunks are not modified

44

Title Trackers
The Boys Season 2 Tracker1-url
Walking Dead Season 10 Tracker2-url
Game of Thrones Season 8 Tracker2-url,Tracker3-url

P2P file distribution: BitTorrent

§ peer joining torrent:
• has no chunks, but will accumulate

them over time from other peers
• registers with tracker to get list of

peers, connects to subset of peers
(“neighbors”)

§ while downloading, peer uploads chunks to other peers
§ peer may change peers with whom it exchanges chunks
§ churn: peers may come and go
§ once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

45

BitTorrent: requesting, sending file chunks

Requesting chunks:
§ at any given time,

different peers have
different subsets of file
chunks

§ periodically, Alice asks
each peer for list of
chunks that they have

§ Alice requests missing
chunks from peers,
rarest first (why?)

Sending chunks: tit-for-tat
§ Alice sends chunks to those

four peers currently sending
her chunks at highest rate
• other peers are choked by Alice

(do not receive chunks from her)
• re-evaluate top 4 every10 secs

§ every 30 secs: randomly
select another peer, starts
sending chunks
• “optimistically unchoke” this peer
• newly chosen peer may join top 4

46

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better
trading partners, get file faster !

47Original Research Paper on BitTorrent added to lecture notes: NOT MANDATORY READING

Distributed Hash Table (DHT)
v DHT: a distributed P2P database
v database has (key, value) pairs; examples:

§ key: TFN number; value: human name
§ key: file name; value: IP addresses of peers (BitTorrent Tracker)

v Distribute the (key, value) pairs over many peers
v a peer queries DHT with key

§ DHT returns values that match the key
v peers can also insert (key, value) pairs

48

Content available in 6th Edition of the textbook Section 2.6.2, Added to Lecture Notes

Q: how to assign keys to peers?

v basic idea:
§ convert each key to an integer
§ Assign integer value to each peer
§ put (key, value) pair in the peer that is closest to the key

49

DHT identifiers: Consistent Hashing

v assign integer identifier to each peer in range [0,2n-1] for some n-bit hash
function
§ E.g., node ID is hash of its IP address

v require each key to be an integer in same range
v to get integer key, hash original key

§ e.g., key = hash(“The Boys Season 2”)
§ therefore, it is referred to as a distributed “hash” table

50

Assign keys to peers
v rule: assign key to the peer that has the closest ID.
v common convention: closest is the immediate successor of

the key.
v e.g., n=4; all peers & key identifiers are in the range [0-15],

peers: 1,3,4,5,8,10,12,14;
§ key = 13, then successor peer = 14
§ key = 15, then successor peer = 1

51

Question: How is the peer-to-peer network organised?

One way could be to require each peer to be aware of every other peer, but this would
not scale.

1

3

4

5

8
10

12

15

Circular DHT (1)

v each peer only aware of immediate successor and predecessor
v “overlay network”
v queries typically propagate in clockwise direction

52

1

3

4

5

8
10

12

15

Who’s responsible
for key 14?

I am

14?

14?

14?

14?

14?

14?

Define closest
as closest
successor

Circular DHT (2)

53

v Each peer maintains 2 neighbours
v In this example, 6 query messages are sent
v Worst case: N messages, Average: N/2 messages

Circular DHT with shortcuts

v each peer keeps track of IP addresses of predecessor, successor, short cuts
v reduced from 6 to 2 messages.
v possible to design shortcuts so O(log N) neighbours, O(log N) messages in query

1

3

4

5

8
10

12

15

Who’s responsible
for key 14?

54

3 has shortcut to 8
8 has shortcut to 15
and so on

Peer churn

example: peer 5 abruptly leaves
vpeer 4 detects peer 5 departure; makes 8 its immediate successor; asks 8
who its immediate successor is; makes 8’s immediate successor its second
successor.

1

3

4

5

8
10

12

15

handling peer churn:
vpeers may come and go (churn)
veach peer knows address of its two
successors
veach peer periodically pings its
two successors to check aliveness
vif immediate successor leaves, choose next
successor as new immediate successor

55

More DHT info

v How do nodes join?

v How does cryptographic hashing work?

v How much state does each node store?

56

Research Papers (on the lectures page):
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications
NOT MANDATORY READING

v BitTorrent uses tit-for-tat in each round to

a) Determine which chunks to download
b) Determine from which peers to download chunks
c) Determine to which peers to upload chunks
d) Determine which peers to report to the tracker as

uncooperative
e) Determine whether or how long it should stay after

completing download

57

Quiz: BitTorrent

www.pollev.com/salil
Answer: C

2. Application Layer: outline

2.1 principles of network applications
2.2 Web and HTTP
2.3 electronic mail

§ SMTP
2.4 DNS

2.5 P2P applications
2.6 video streaming and content

distribution networks (CDNs)
2.7 socket programming with

UDP and TCP

58

Video Streaming and CDNs: context
§ stream video traffic: major consumer of Internet

bandwidth
• Netflix, YouTube, Amazon Prime: 80% of residential ISP

traffic (2020)

§ challenge: scale - how to reach ~1B users?
• single mega-video server won’t work (why?)

§ challenge: heterogeneity
§ different users have different capabilities (e.g., wired

versus mobile; bandwidth rich versus bandwidth poor)
§ solution: distributed, application-level infrastructure

59

Multimedia: video
§ video: sequence of images

displayed at constant rate
• e.g., 24 images/sec

§ digital image: array of pixels
• each pixel represented by bits

§ coding: use redundancy within
and between images to decrease
bits used to encode image
• spatial (within image)
• temporal (from one image to

next)

……………………..

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:
instead of sending
complete frame at i+1,
send only differences from
frame i

60

Multimedia: video

……………………..

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:
instead of sending
complete frame at i+1,
send only differences from
frame i

§ CBR: (constant bit rate): video
encoding rate fixed

§ VBR: (variable bit rate): video
encoding rate changes as amount
of spatial, temporal coding
changes

§ examples:
• MPEG 1 (CD-ROM) 1.5 Mbps
• MPEG2 (DVD) 3-6 Mbps
• MPEG4 (often used in

Internet, 64Kbps – 12 Mbps)
61

Main challenges:
v server-to-client bandwidth will vary over time, with changing network

congestion levels (in house, in access network, in network core, at
video server)

v packet loss and delay due to congestion will delay playout, or result in
poor video quality

Streaming stored video
simple scenario:

video server
(stored video)

client

Internet

62

Streaming stored video

1. video
recorded
(e.g., 30
frames/sec)

2. video
sent

C
um

ul
at

iv
e

da
ta

streaming: at this time, client playing out early part of
video, while server still sending later part of video

network
delay

(fixed in this
example)

time

3. video received, played out at
client
(30 frames/sec)

63

Streaming stored video: challenges
§ continuous playout constraint: once client

playout begins, playback must match
original timing
• … but network delays are variable (jitter), so

will need client-side buffer to match playout
requirements

§ other challenges:
• client interactivity: pause, fast-forward,

rewind, jump through video
• video packets may be lost, retransmitted

Application Layer: 2-64

Streaming stored video: playout buffering

constant bit
rate video

transmission

C
um

ul
at

iv
e

da
ta

time

variable
network
delay

client video
reception

constant bit
rate video

playout at client

client playout
delay

bu
ffe

re
d

vi
de

o
§client-side buffering and playout delay: compensate
for network-added delay, delay jitter

65

Streaming multimedia: DASH
§ DASH: Dynamic, Adaptive Streaming over HTTP
§ server:

• divides video file into multiple chunks
• each chunk stored, encoded at different rates
• manifest file: provides URLs for different chunks

§ client:
• periodically measures server-to-client bandwidth
• consulting manifest, requests one chunk at a time

• chooses maximum coding rate sustainable given current bandwidth
• can choose different coding rates at different points in time

(depending on available bandwidth at time)

client

Internet

66

Streaming multimedia: DASH
§ “intelligence” at client: client

determines
• when to request chunk (so that buffer

starvation, or overflow does not occur)
• what encoding rate to request (higher

quality when more bandwidth available)

• where to request chunk (can request
from URL server that is “close” to client
or has high available bandwidth)

Streaming video = encoding + DASH + playout buffering
67

Content distribution networks (CDNs)
§ challenge: how to stream content (selected from

millions of videos) to hundreds of thousands of
simultaneous users?

§ option 1: single, large “mega-server”
• single point of failure
• point of network congestion
• long path to distant clients
• multiple copies of video sent over outgoing link

….quite simply: this solution doesn’t scale
68

Content distribution networks (CDNs)
§ challenge: how to stream content (selected from

millions of videos) to hundreds of thousands of
simultaneous users?

• enter deep: push CDN servers deep into
many access networks
• close to users
• Akamai: 240,000 servers deployed in more than

120 countries (2015)
• bring home: smaller number (10’s) of larger

clusters in POPs near (but not within) access
networks
• used by Limelight

§ option 2: store/serve multiple copies of videos at
multiple geographically distributed sites (CDN)

69

…

…

……

…

…

§ subscriber requests content from CDN

Content distribution networks (CDNs)
§ CDN: stores copies of content at CDN nodes

• e.g., Netflix stores copies of MadMen

where’s Madmen?
manifest file

• directed to nearby copy, retrieves content
• may choose different copy if network path congested

70

…

…

……

…

…
Internet host-host communication as a service

OTT challenges: coping with a congested Internet
§ from which CDN node to retrieve content?
§ viewer behavior in presence of congestion?
§ what content to place in which CDN node?

OTT: “over the top”

Content distribution networks (CDNs)

71

CDN content access: a closer look

netcinema.com

KingCDN.com

1

1. Bob gets URL for video
http://netcinema.com/6Y7B23V
from netcinema.com web page

2
2. resolve http://netcinema.com/6Y7B23V
via Bob’s local DNS

netcinema’s
authoratative DNS

3

3. netcinema’s DNS returns CNAME for
http://KingCDN.com/NetC6y&B23V 4

56. request video from
KINGCDN server,
streamed via HTTP

KingCDN
authoritative DNS

Bob’s
local DNS
server

Bob (client) requests video http://netcinema.com/6Y7B23V
§ video stored in CDN at http://KingCDN.com/NetC6y&B23V

72

Case study: Netflix

1
Bob manages
Netflix account

Netflix registration,
accounting servers

Amazon cloud

CDN
server

2

Bob browses
Netflix video Manifest

file,
requested
returned for
specific
video

DASH server
selected,
contacted,
streaming begins

upload copies of
multiple versions of
video to CDN servers

CDN
server

CDN
server

3

4

73

v The role of the CDN provider’s authoritative DNS name server in a
content distribution network, simply described, is:
a) to provide an alias address for each browser access to the “origin

server” of a CDN website
b) to map the query for each CDN object to the CDN server closest

to the requestor (browser)
c) to provide a mechanism for CDN “origin servers” to provide paths

for clients (browsers)
d) none of the above, CDN networks do not use DNS

74

Quiz: CDN

www.pollev.com/salil
Answer: B

2. Application Layer: outline

2.1 principles of network applications
2.2 Web and HTTP
2.3 electronic mail

§ SMTP
2.4 DNS

2.5 P2P applications
2.6 video streaming and content

distribution networks (CDNs)
2.7 socket programming with

UDP and TCP

75

Please see example code (C, Java, Python) on course website
Labs 2 & 3 will include a socket programming exercise

Socket programming
goal: learn how to build client/server applications that

communicate using sockets
socket: door between application process and end-end-

transport protocol

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

-76

Socket programming with UDP

UDP: no “connection” between client & server
v no handshaking before sending data
v sender explicitly attaches IP destination address and port # to each

packet
v receiver extracts sender IP address and port# from received

packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
vUDP provides unreliable transfer of groups of bytes (“datagrams”)

between client and server

77

Pseudo code UDP client

v Create socket
v Loop

§ (Send UDP datagram to known port and IP addr of server)

§ (Receive UDP datagram as a response from server)
v Close socket

78

Pseudo code UDP server

v Create socket
v Bind socket to a specific port where clients can contact

you
v Loop

§ (Receive UDP datagram from client X)

§ (Send UDP datagram as reply to client X)
v Close socket

79

Note: The IP address and port number of the client must be extracted from the client’s message

Socket programming with TCP
Client must contact server

v server process must first be
running

v server must have created socket
(door) that welcomes client’s
contact

Client contacts server by:
v Creating TCP socket, specifying IP

address, port number of server
process

v when client creates socket: client
TCP establishes connection to
server TCP

§ when contacted by client, server
TCP creates new socket for server
process to communicate with that
particular client
• allows server to talk with multiple

clients
• source port numbers used to

distinguish clients (more when we
study TCP)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

Application viewpoint

80

TCP Sockets

81

Pseudo code TCP client

v Create socket (ConnectionSocket)
v Do an active connect specifying the IP address and port

number of server
v Read and write data into ConnectionSocket to

communicate with client
v Close ConnectionSocket

82

Pseudo code TCP server

v Create socket (WelcomingSocket)
v Bind socket to a specific port where clients can contact

you
v Register with the OS your willingness to listen on that

socket for clients to contact you
v Loop

§ Accept new connection(ConnectionSocket)
§ Read and write data into ConnectionSocket to communicate

with client
§ Close ConnectionSocket

v Close WelcomingSocket

83

Queues

v While the server socket is busy, incoming connection
requests are stored in a queue

v Once the queue fills up, further incoming connections are
refused

v This is clearly a problem
§ Example: HTTP servers

v Solution
§ Concurrency

84

Concurrent TCP Servers

v Benefit comes in ability to hand off interaction with a client to
another process

v Parent process creates the WelcomingSocket and waits for
clients to request connection

v When a connection request is received, fork off a child process
to handle that connection so that the parent process can return
to waiting for connections as soon as possible

v Multithreaded server: same idea, just spawn off another thread
rather than a process

85

Summary

§ application architectures
• client-server
• P2P

§ application service requirements:
• reliability, bandwidth, delay

§ Internet transport service model
• connection-oriented, reliable:

TCP
• unreliable, datagrams: UDP

our study of network apps now complete!

86

§ specific protocols:
• HTTP
• SMTP, IMAP
• DNS
• P2P: BitTorrent, DHT

§ video streaming, CDNs
§ socket programming:

TCP, UDP sockets

