
Application Layer (Principles, Web, Email) 

Computer Networks and Applications

Week 2
COMP 3331/COMP 9331

Chapter 2: Sections 2.1-2.3

1



2. Application Layer: outline

2.1 principles of network applications
2.2 Web and HTTP
2.3 electronic mail

§ SMTP
2.4 DNS

2.5 P2P applications
2.6 video streaming and content 

distribution networks (CDNs)
2.7 socket programming with 

UDP and TCP

2



2. Application layer

our goals:
v conceptual, implementation aspects 

of network application protocols
§ transport-layer service models
§ client-server paradigm
§ peer-to-peer paradigm

v learn about protocols by examining 
popular application-level protocols
§ HTTP
§ SMTP, IMAP
§ DNS

v programming network applications
§ socket API

3



Some network apps

§ social networking
§ Web
§ text messaging
§ e-mail
§ multi-user network games
§ streaming stored video 

(YouTube, Hulu, Netflix) 
§ P2P file sharing

4

§ voice over IP (e.g., Skype)
§ real-time video conferencing
§ Internet search
§ remote login
§ …

Q: your favorites?



mobile network

home network

enterprise
network

national or global ISP

local or 
regional 
ISP

datacenter 
network

content 
provider 
network

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Creating a network app
write programs that:
§ run on (different) end systems
§ communicate over network

§ e.g., web server software 
communicates with browser software

no need to write software for 
network-core devices
§ network-core devices do not run user 

applications 
§ applications on end systems allows for 

rapid app development, propagation

5



mobile network

home network

enterprise
network

national or global ISP

local or 
regional 
ISP

datacenter 
network

content 
provider 
network

Client-server paradigm
server: 
§ always-on host
§ permanent IP address
§ often in data centers, for scaling

clients:
§ contact, communicate with server
§ may be intermittently connected
§ may have dynamic IP addresses
§ do not communicate directly with 

each other
§ examples: HTTP, IMAP, FTP

6



mobile network

home network

enterprise
network

national or global ISP

local or 
regional 
ISP

datacenter 
network

content 
provider 
network

Peer-peer architecture
§ no always-on server
§ arbitrary end systems directly 

communicate
§ peers request service from other 

peers, provide service in return to 
other peers
• self scalability – new peers bring new 

service capacity, as well as new service 
demands

§ peers are intermittently connected 
and change IP addresses
• complex management

§ example: P2P file sharing, blockchain
7



Processes communicating

process: program running within 
a host

§within same host, two 
processes communicate using  
inter-process communication
(defined by OS)

§processes in different hosts 
communicate by exchanging 
messages

8

client process: process that 
initiates communication

server process: process that 
waits to be contacted

§ note: applications with 
P2P architectures have 
client processes & 
server processes

clients, servers



Sockets

9

§ process sends/receives messages to/from its socket
§ socket analogous to door

• sending process shoves message out the door
• sending process relies on transport infrastructure on other side of 

door to deliver message to socket at receiving process
• two sockets involved: one on each side

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket



Addressing processes

10

§ to receive messages, process  
must have identifier

§ host device has unique 32-bit 
IP address

§Q: does  IP address of host on 
which process runs suffice for 
identifying the process?

§ identifier includes both IP address
and port numbers associated with 
process on host.

§ example port numbers:
• HTTP server: 80
• mail server: 25

§ to send HTTP message to 
gaia.cs.umass.edu web server:
• IP address: 128.119.245.12
• port number: 80

§more shortly…

§ A: no, many processes 
can be running on 
same host



An application-layer protocol defines:

11

§ types of messages exchanged, 
• e.g., request, response 

§message syntax:
• what fields in messages & how 

fields are delineated
§message semantics 

• meaning of information in 
fields

§ rules for when and how 
processes send & respond to 
messages

open protocols:
§ defined in RFCs, everyone 

has access to protocol 
definition

§ allows for interoperability
§ e.g., HTTP, SMTP, WebRTC
proprietary protocols:
§ e.g., Skype, Zoom, Teams



What transport service does an app need?

12

data integrity
§ some apps (e.g., file transfer, 

web transactions) require 
100% reliable data transfer

§ other apps (e.g., audio) can 
tolerate some loss

timing
§ some apps (e.g., Internet 

telephony, interactive games) 
require low delay to be “effective”

throughput
§ some apps (e.g., multimedia) 

require minimum amount of 
throughput to be “effective”

§ other apps (“elastic apps”) 
make use of whatever 
throughput they get 

security
§ encryption, data integrity, 

…



Transport service requirements: common apps

13

application

file transfer/download
e-mail

Web documents
real-time audio/video

streaming audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5Kbps-1Mbps

video:10Kbps-5Mbps

same as above 
Kbps+
elastic

time sensitive?

no
no
no
yes, 10’s msec

yes, few secs
yes, 10’s msec
yes and no



Internet transport protocols services

14

TCP service:
§ reliable transport between sending and 

receiving process
§ flow control: sender won’t overwhelm 

receiver 
§ congestion control: throttle sender 

when network overloaded
§ does not provide: timing, minimum 

throughput guarantee, security
§ connection-oriented: setup required 

between client and server processes

UDP service:
§ unreliable data transfer between 

sending and receiving process
§ does not provide: reliability, flow 

control, congestion control, 
timing, throughput guarantee, 
security, or connection setup.

Q: why bother?  Why
is there a UDP?

NOTE: More on transport layer later



Internet transport protocols services

15

application

file transfer/download
e-mail

Web documents
Internet telephony

streaming audio/video
interactive games

application
layer protocol

FTP [RFC 959]
SMTP [RFC 5321]
HTTP 1.1 [RFC 7320]
SIP [RFC 3261], RTP [RFC 
3550], or proprietary 
HTTP [RFC 7320], DASH
WOW, FPS (proprietary) 

transport protocol

TCP
TCP
TCP

TCP or UDP

TCP
UDP or TCP



Securing TCP

16

Vanilla TCP & UDP sockets:
§ no encryption
§ cleartext passwords sent into socket 

traverse Internet  in cleartext (!)

Transport Layer Security (TLS) 
§ provides encrypted TCP connections
§ data integrity
§ end-point authentication

TLS implemented in 
application layer
§ apps use TLS libraries, that 

use TCP in turn

TLS socket API
§ cleartext sent into socket  

traverse Internet encrypted
§ see Chapter 8



17

Quiz: Transport

Pick the true statement

A. TCP provides reliability and guarantees a minimum bandwidth

B. TCP provides reliability while UDP provides bandwidth guarantees

C. TCP provides reliability while UDP does not

D. Neither TCP nor UDP provides reliability

Open a browser and type: www.pollev.com/salil

Answer: C



2. Application Layer: outline

2.1 principles of network applications
2.2 Web and HTTP
2.3 electronic mail

§ SMTP
2.4 DNS

2.5 P2P applications
2.6 video streaming and content 

distribution networks (CDNs)
2.7 socket programming with 

UDP and TCP

18



The Web – History
v World Wide Web (WWW): a distributed 

database of “pages” linked through Hypertext 
Transport Protocol (HTTP)
§ First HTTP implementation - 1990 

• Tim Berners-Lee at CERN
§ HTTP/0.9 – 1991

• Simple GET command for the Web
§ HTTP/1.0 –1992

• Client/Server information, simple caching
§ HTTP/1.1 – 1996
§ HTTP2.0 - 2015 

Tim Berners-Lee

19

http://info.cern.ch/hypertext/WWW/TheProject.html

http://info.cern.ch/hypertext/WWW/TheProject.html


20



Web and HTTP

21

First, a quick review…
§ web page consists of objects, each of which can be stored on 

different Web servers
§ object can be HTML file, JPEG image, Java applet, audio file,…
§ web page consists of base HTML-file which includes several 

referenced objects, each addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name



Uniform Resource Locator (URL)

protocol://host-name[:port]/directory-path/resource

v protocol: http, ftp, https, smtp etc.
v hostname: DNS name, IP address
v port: defaults to protocol’s standard port; e.g., http: 80  https: 443
v directory path: hierarchical, reflecting file system
v resource: Identifies the desired resource

22



HTTP overview

23

HTTP: hypertext transfer protocol
§ Web’s application layer 

protocol
§ client/server model:

• client: browser that requests, 
receives, (using HTTP protocol) and 
“displays”Web objects 

• server: Web server sends (using 
HTTP protocol) objects in response 
to requests

PC running
Firefox browser

server running
Apache Web

server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response



HTTP overview (continued)

24

HTTP uses TCP:
§ client initiates TCP connection 

(creates socket) to server,  port 80
§ server accepts TCP connection 

from client
§ HTTP messages (application-layer 

protocol messages) exchanged 
between browser (HTTP client) 
and Web server (HTTP server)

§ TCP connection closed

HTTP is “stateless”
§ server maintains no 

information about past client 
requests

protocols that maintain “state”
are complex!

§ past history (state) must be 
maintained

§ if server/client crashes, their views 
of “state” may be inconsistent, must 
be reconciled

aside



HTTP request message

25

§ two types of HTTP messages: request, response
§ HTTP request message:

• ASCII (human-readable format)

request line (GET, 
POST, 
HEAD commands)

header
lines

carriage return, line feed 
at start of line indicates 
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character



HTTP request message: general format

26

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~



Other HTTP request messages

-27

POST method:
§ web page often includes form input
§ user input sent from client to server 

in entity body of HTTP POST 
request message

GET method (for sending data to 
server):
§ include user data in URL field of HTTP 

GET request message (following a ‘?’):
www.somesite.com/animalsearch?monkeys&banana

HEAD method:
§ requests headers (only) that would be 

returned if specified URL were 
requested  with an HTTP GET method. 

PUT method:
§ uploads new file (object) to server
§ completely replaces file that exists at 

specified URL with content in entity 
body of POST HTTP request message



HTTP response message

28

status line (protocol
status code status phrase)

header
lines

data, e.g.,  requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ... 



HTTP response status codes

29

200 OK
• request succeeded, requested object later in this message

301 Moved Permanently
• requested object moved, new location specified later in this message (in 

Location: field)
400 Bad Request

• request msg not understood by server
404 Not Found

• requested document not found on this server
505 HTTP Version Not Supported

§ status code appears in 1st line in server-to-client response message.
§ some sample codes:



HTTP is all text

v Makes the protocol simple
§ Easy to delineate messages (\r\n)
§ (relatively) human-readable
§ No issues about encoding or formatting data
§ Variable length data

v Not the most efficient
§ Many protocols use binary fields

• Sending “12345678” as a string is 8 bytes
• As an integer, 12345678 needs only 4 bytes

§ Headers may come in any order
§ Requires string parsing/processing

v Non-text content needs to be encoded

30



Maintaining user/server state: cookies

31

Recall:  HTTP GET/response 
interaction is stateless

§ no notion of multi-step exchanges of 
HTTP messages to complete a Web 
“transaction” 
• no need for client/server to track 

“state” of multi-step exchange
• all HTTP requests are independent of 

each other
• no need for client/server to “recover” 

from a partially-completed-but-never-
completely-completed transaction

a stateful protocol: client makes 
two changes to X, or none

time time

OK

OK
unlock X

OK

update X      X’

update X      X’’

lock data record X

OK
X

X

X’

X’
’

X’’

t’

Q: what happens if network connection or 
client crashes at t’ ?



Maintaining user/server state: cookies

32

Web sites and client browser use 
cookies to maintain some state 
between transactions

four components:
1) cookie header line of HTTP response

message
2) cookie header line in next HTTP 

request message
3) cookie file kept on user’s host, 

managed by user’s browser
4) back-end database at Web site

Example:
§ Susan uses browser on laptop, 

visits specific e-commerce site 
for first time

§ when initial HTTP requests 
arrives at site, site creates: 

• unique ID (aka “cookie”)
• entry in backend database 

for ID
• subsequent HTTP requests 

from Susan to this site will 
contain cookie ID value, 
allowing site to “identify” 
Susan



Maintaining user/server state: cookies

33

client
server

usual HTTP response msg

usual HTTP response msg

cookie file

one week later:

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual HTTP request msg Amazon server
creates ID

1678 for user create
entry

usual HTTP response 
set-cookie: 

1678 
ebay 8734
amazon 1678

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

time time



HTTP cookies: comments

34

What cookies can be used for:
§ authorization
§ shopping carts
§ recommendations
§ user session state (Web e-mail)

cookies and privacy:
§ cookies permit sites to 

learn a lot about you on 
their site.

§ third party persistent 
cookies (tracking cookies) 
allow common identity 
(cookie value) to be 
tracked across multiple 
web sites

aside

Challenge: How to keep state:
§ protocol endpoints: maintain state at 

sender/receiver over multiple transactions
§ cookies: HTTP messages carry state



The Dark Side of Cookies

v Cookies permit sites to learn a lot about you

v You may supply name and e-mail to sites (and more)

v 3rd party cookies (from ad networks, etc.) can follow you across 
multiple sites
§ Ever visit a website, and the next day ALL your ads are from them ? 

• Check your browser’s cookie file (cookies.txt, cookies.plist)
• Do you see a website that you have never visited

v You COULD turn them off
§ But good luck doing anything on the Internet !!

35



Third party cookies

Doubleclick server

Banner 1 url

Create cookie for 
doubleclick: 3445

Banner 2 url

Cookie:3445

Website A Website B

For more, check the following link and follow the references:
http://en.wikipedia.org/wiki/HTTP_cookie

36In practice the banner can be a single pixel (invisible to the user)



37

Performance of HTTP

Ø Page Load Time (PLT) is an important metric
• From click (or typing URL) until user sees page
• Key measure of web performance

Ø Depends on many factors such as 
• page content/structure, 
• protocols involved and 
• Network bandwidth and RTT



Performance Goals

v User
§ fast downloads
§ high availability 

v Content provider
§ happy users (hence, above)
§ cost-effective infrastructure  

v Network (secondary) 
§ avoid overload

38



Solutions?

v User
§ fast downloads
§ high availability 

v Content provider
§ happy users (hence, above)
§ cost-effective infrastructure  

v Network (secondary) 
§ avoid overload

Improve HTTP to 
achieve faster 
downloads

39



Solutions?

v User
§ fast downloads
§ high availability 

v Content provider
§ happy users (hence, above)
§ cost-effective delivery infrastructure  

v Network (secondary) 
§ avoid overload

Caching and Replication

40

Improve HTTP to 
achieve faster 
downloads



Solutions?

v User
§ fast downloads
§ high availability 

v Content provider
§ happy users (hence, above)
§ cost-effective delivery infrastructure  

v Network (secondary) 
§ avoid overload

Caching and Replication

Exploit economies of scale 
(Webhosting, CDNs, datacenters)

Improve HTTP to 
achieve faster 
downloads

41



42

How to improve PLT

Ø Reduce content size for transfer
• Smaller images, compression

Ø Change HTTP to make better use of available bandwidth
• Persistent connections and pipelining

Ø Change HTTP to avoid repeated transfers of the same 
content
• Caching and web-proxies

Ø Move content closer to the client
• CDNs



HTTP Performance
v Most Web pages have multiple objects

§ e.g., HTML file and a bunch of embedded images
v How do you retrieve those objects (naively)?

§ One item at a time
v New TCP connection per (small) object!

non-persistent HTTP
v at most one object sent over TCP connection

§ connection then closed
v downloading multiple objects required multiple 

connections

43



Non-persistent HTTP: response time

RTT (definition): time for a small packet to 
travel from client to server and back

HTTP response time:
v one RTT to initiate TCP connection 

(approximate 3-way handshake)
v one RTT for HTTP request and first few 

bytes of HTTP response to return
v file transmission time
v non-persistent HTTP response time =   

2RTT+ file transmission  time

time to 
transmit 
file

initiate TCP
connection

RTT
request
file

RTT

file
received

time time

44

Internet



45

HTTP/1.0

Ø Non-Persistent: One TCP connection 
to fetch one web resource

Ø Fairly poor PLT
Ø 2 Scenarios

• Multiple TCP connections setups to the 
same server

• Sequential request/responses even when 
resources are located on different servers

Ø Multiple TCP slow-start phases (more 
in lecture on TCP)



Improving HTTP Performance:
Concurrent Requests & Responses

v Use multiple connections in parallel

v Does not necessarily maintain order 
of responses R1

R2 R3

T1

T2 T3

46



What are potential downsides of parallel HTTP connections, i.e., can 
opening too many parallel connections be harmful and if so in what way?

47

Quiz: Parallel HTTP Connections

Open a browser and type: www.pollev.com/salil

Answer: Increase load on the server – handling parallel TCP connections from 
multiple clients



Persistent  HTTP
v server leaves TCP connection open after 

sending response
v subsequent HTTP messages  between same 

client/server are sent over the same TCP 
connection

v Allow TCP to learn more accurate RTT 
estimate (APPARENT LATER IN THE 
COURSE)

v Allow TCP congestion window to increase 
(APPARENT LATER)

v i.e., leverage previously discovered 
bandwidth (APPARENT LATER)

Persistent without pipelining:
v client issues new request only when previous 

response has been received
v one RTT for each referenced object

Persistent with pipelining:
v introduced in HTTP/1.1
v client sends requests as soon as it encounters 

a referenced object
v as little as one RTT for all the referenced 

objects

Persistent HTTP (HTTP/1.1)

48



HTTP 1.1: response time with pipelining

49

initiate TCP
connection

RTT
request
file

RTT

file
received

time time

Internet

time to 
transmit 
file

Website with one 
index page and three 
embedded objects



50

How to improve PLT

Ø Reduce content size for transfer
• Smaller images, compression

Ø Change HTTP to make better use of available bandwidth
• Persistent connections and pipelining

Ø Change HTTP to avoid repeated transfers of the same 
content
• Caching and web-proxies

Ø Move content closer to the client
• CDNs



Improving HTTP Performance: Caching

Ø Why does caching work?
• Exploit locality of reference

Ø How well does caching work?
• Very well, up to a limit
• Large overlap in content
• But many unique requests

Ø Trend: increase in dynamic content
• For example, customization of web pages
• Reduces benefits of caching
• Some exceptions, for example, video content

51



Web caches (proxy servers)

52

§ user configures browser to 
point to a Web cache

§ browser sends all HTTP 
requests to cache

• if object in cache: cache 
returns object to client

• else cache requests object 
from origin server, caches 
received object, then 
returns object to client

Goal: satisfy client request without involving origin server

client

proxy
server

client

HTTP req
uest

HTTP res
ponse

HTTP request HTTP request

origin 
server

origin 
server

HTTP response HTTP response



Web caches (proxy servers)

53

§ Web cache acts as both 
client and server
• server for original 

requesting client
• client to origin server

§ typically, cache is 
installed by ISP 
(university, company, 
residential ISP)

Why Web caching?
§ reduce response time for client 

request 
• cache is closer to client

§ reduce traffic on an institution’s 
access link

§ Internet is dense with caches 
• enables “poor” content providers 

to more effectively deliver content



Caching example

54

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps 
access link

problem: large 
delays at high 
utilization!

Performance:
§ LAN utilization: .0015
§ access link utilization = .97
§ end-end delay  =  Internet delay +

access link delay + LAN delay 
=  2 sec + minutes + usecs

Scenario:
§ access link rate: 1.54 Mbps
§ RTT from institutional router to server: 2 sec
§ Web object size: 100K bits
§ Average request rate from browsers to origin 

servers: 15/sec
§ average data rate to browsers: 1.50 Mbps



Caching example: buy a faster access link

55

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps 
access linkPerformance:

§ LAN utilization: .0015
§ access link utilization = .97
§ end-end delay  =  Internet delay +

access link delay + LAN delay 
=  2 sec + minutes + usecs

Scenario:
§ access link rate: 1.54 Mbps
§ RTT from institutional router to server: 2 sec
§ Web object size: 100K bits
§ Avg request rate from browsers to origin 

servers: 15/sec
§ avg data rate to browsers: 1.50 Mbps

154 Mbps

154 Mbps

.0097

msecsCost: faster access link (expensive!)



Performance:
§ LAN utilization: .?
§ access link utilization = ?
§ average end-end delay  = ?

Caching example: install a web cache

56

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps 
access link

Scenario:
§ access link rate: 1.54 Mbps
§ RTT from institutional router to server: 2 sec
§ Web object size: 100K bits
§ Avg request rate from browsers to origin 

servers: 15/sec
§ avg data rate to browsers: 1.50 Mbps

How to compute link 
utilization, delay?

Cost: web cache (cheap!) local web cache



Caching example: install a web cache

57

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps 
access link

local web cache

Calculating access link utilization, end-
end delay with cache:
§ suppose cache hit rate is 0.4:  40% requests 

satisfied at cache; 60% requests satisfied at 
origin 

§ access link: 60% of requests use access link 
§ data rate to browsers over access link 

= 0.6 * 1.50 Mbps  =  .9 Mbps 
§ utilization = 0.9/1.54 = .58

§ average end-end delay
= 0.6 * (delay from origin servers)

+ 0.4 * (delay when satisfied at cache)
= 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs

lower average end-end delay than with 154 Mbps link (and cheaper too!)



Conditional GET

58

Goal: don’t send object if cache has 
up-to-date cached version

• no object transmission delay
• lower link utilization

§ cache: specify date of cached copy 
in HTTP request
If-modified-since: <date>

§ server: response contains no object 
if cached copy is up-to-date: 
HTTP/1.0 304 Not Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 

304 Not Modified

object 
not 

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK
<data>

object 
modified

after 
<date>

client server



Example Cache Check Request

59



Example Cache Check Response

60

Etag: Usually used for dynamic content. The value is often a 
cryptographic hash of the content.



Ø Replicate popular Web site across many machines
• Spreads load on servers
• Places content closer to clients
• Helps when content isn’t cacheable

Ø Problem:  
• Want to direct client to a particular replica

• Balance load across server replicas
• Pair clients with nearby servers

• Expensive

Ø Common solution: 
• DNS returns different addresses based on client’s geo-location, server load, etc.

Improving HTTP Performance: Replication

61



Ø Caching and replication as a service
Ø Large-scale distributed storage infrastructure (usually) administered by one entity

• e.g., Akamai has servers in 20,000+ locations
Ø Combination of (pull) caching and (push) replication

• Pull: Direct result of clients’ requests 
• Push:  Expectation of high access rate

Ø Also do some processing
• Handle dynamic web pages
• Transcoding

62

Improving HTTP Performance: CDN

More on this later



What about HTTPS?

Ø HTTP is insecure
Ø HTTP basic authentication: password sent using base64

encoding (can be readily converted to plaintext)
Ø HTTPS: HTTP over a connection encrypted by Transport

Layer Security (TLS)
Ø Provides:

• Authentication
• Bidirectional encryption

Ø Widely used in place of plain vanilla HTTP

63



HTTP/2
Key goal: decreased delay in multi-object HTTP requests

HTTP1.1: introduced multiple, pipelined GETs over single TCP 
connection
§ server responds in-order (FCFS: first-come-first-served scheduling) to 

GET requests
§with FCFS, small object may have to wait for transmission  (head-of-

line (HOL) blocking) behind large object(s)
§ loss recovery (retransmitting lost TCP segments) stalls object 

transmission

64



HTTP/2: mitigating HOL blocking
HTTP 1.1: client requests 1 large object (e.g., video file, and 3 smaller 
objects)

client

server

GET O1
GET O2

GET O3
GET O4

O1O2
O3O4

object data 
requested

O1

O2
O3
O4

objects delivered in order requested: O2, O3, O4 wait behind O1 65



HTTP/2
Key goal: decreased delay in multi-object HTTP requests

HTTP/2: [RFC 7540, 2015] increased flexibility at server in sending 
objects to client:
§ methods, status codes, most header fields unchanged from HTTP 1.1
§ transmission order of requested objects based on client-specified 

object priority (not necessarily FCFS)

§ push unrequested objects to client
§ divide objects into frames, schedule frames to mitigate HOL blocking

66



HTTP/2: mitigating HOL blocking
HTTP/2: objects divided into frames, frame transmission interleaved

client

server

GET O1
GET O2

GET O3
GET O4

O2

O4

object data 
requested

O1

O2
O3
O4

O2, O3, O4 delivered quickly, O1 slightly delayed

O3

O1

67



68

Quiz: HTTP (1)

Consider an HTML page with a base file of size S0 bits and N inline objects each
of size S bits. Assume a client fetching the page across a link of capacity C bits/s
and RTT of D. How long does it take to download the page using non-persistent
HTTP (without parallelism)?

A. D + (S0 + NS)/C

B. 2D + (S0 + NS)/C

C. N(D + S/C)

D. 2D + S0/C + N(2D + S/C)

E. 2D + S0/C + N(D + S/C)

Open a browser and type: www.pollev.com/salil

Answer: D (see timing diagram on next page for N = 2)



69

N=2



70

Quiz: HTTP (2)

Consider an HTML page with a base file of size S0 bits and N inline objects
each of size S bits. Assume a client fetching the page across a link of
capacity C bits/s and RTT of D. How long does it take to download the page
using persistent HTTP (without parallelism or pipelining)?

A. 2D + (S0 + NS)/C

B. 3D + (S0 + NS)/C

C. N(D + S/C)

D. 2D + S0/C + N(2D + S/C)

E. 2D + S0/C + N(D + S/C)

Open a browser and type: www.pollev.com/salil

Answer: E (see timing diagram on next page for N = 2)



71

N=2



72

Quiz: HTTP (3)

Consider an HTML page with a base file of size S0 bits and N inline objects
each of size S bits. Assume a client fetching the page across a link of capacity
C bits/s and RTT of D. How long does it take to download the page using
persistent HTTP with pipelining?

A. 2D + (S0 + NS)/C

B. 4D + (S0 + NS)/C

C. N(D + S/C)

D. 3D + S0/C + NS/C

E. 2D + S0/C + N(D + S/C)

Open a browser and type: www.pollev.com/salil

Answer: D (see timing diagram on next page for N = 2)



73

N=2



2. Application Layer: outline

2.1 principles of network applications
2.2 Web and HTTP
2.3 electronic mail

§ SMTP, IMAP
2.4 DNS

2.5 P2P applications
2.6 video streaming and content 

distribution networks (CDNs)
2.7 socket programming with 

UDP and TCP

74



E-mail

75

Three major components: 
§ user agents 
§mail servers 
§ simple mail transfer protocol: SMTP

User Agent
§ a.k.a. “mail reader”
§ composing, editing, reading mail messages
§ e.g., Outlook, iPhone mail client
§outgoing, incoming messages stored on 

server

user mailbox

outgoing 
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent



E-mail: mail servers

76

user mailbox

outgoing 
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

mail servers:
§mailbox contains incoming 

messages for user
§message queue of outgoing (to be 

sent) mail messages
§ SMTP protocol between mail 

servers to send email messages
• client: sending mail server
• “server”: receiving mail server



E-mail: the RFC (5321)

77

§ uses TCP to reliably transfer email message from client (mail server 
initiating connection) to server, port 25

§ direct transfer: sending server (acting like client) to receiving server
§ three phases of transfer

• handshaking (greeting)
• transfer of messages
• closure

§ command/response interaction (like HTTP)
• commands:ASCII text
• response: status code and phrase

§messages must be in 7-bit ASCI



Scenario: Alice sends e-mail to Bob

78

1) Alice uses UA to compose e-mail 
message “to” bob@someschool.edu

4) SMTP client sends Alice’s message 
over the TCP connection

user
agent

mail
server

mail
server

1

2 3 4
5

6

Alice’s mail server Bob’s mail server

user
agent

2) Alice’s UA sends message to her 
mail server; message placed in 
message queue

3) client side of SMTP opens TCP 
connection with Bob’s mail server

5) Bob’s mail server places 
the message in Bob’s 
mailbox

6) Bob invokes his user 
agent to read message



Sample SMTP interaction

79

S: 220 hamburger.edu 
C: HELO crepes.fr 
S: 250  Hello crepes.fr, pleased to meet you 
C: MAIL FROM: <alice@crepes.fr> 
S: 250 alice@crepes.fr... Sender ok 
C: RCPT TO: <bob@hamburger.edu> 
S: 250 bob@hamburger.edu ... Recipient ok 
C: DATA 
S: 354 Enter mail, end with "." on a line by itself 
C: Do you like ketchup? 
C: How about pickles? 
C: . 
S: 250 Message accepted for delivery 
C: QUIT 
S: 221 hamburger.edu closing connection



SMTP: closing observations

80

§ SMTP uses persistent 
connections

§ SMTP requires message 
(header & body) to be in 
7-bit ASCII

§ SMTP server uses 
CRLF.CRLF to determine 
end of message

comparison with HTTP:

§ HTTP: pull
§ SMTP: push

§ both have ASCII command/response 
interaction, status codes

§ HTTP: each object encapsulated in its 
own response message

§ SMTP: multiple objects sent in 
multipart message



Mail message format

81

SMTP: protocol for exchanging e-mail 
messages, defined in RFC 531 (like HTTP)
RFC 822 defines syntax for e-mail message 
itself (like HTML)
§ header lines, e.g.,

• To:
• From:
• Subject:
these lines, within the body of the email 
message area different from SMTP MAIL FROM:, 
RCPT TO: commands!

§ Body: the “message” , ASCII characters only

header

body

blank
line



Mail access protocols

82

sender’s e-mail 
server

SMTP SMTP
e-mail access

protocol

receiver’s e-mail 
server

(e.g., IMAP, 
HTTP)

user
agent

user
agent

§ SMTP: delivery/storage of e-mail messages to receiver’s server

§mail access protocol: retrieval from server
• IMAP: Internet Mail Access Protocol [RFC 3501]: messages stored on server, IMAP 

provides retrieval, deletion, folders of stored messages on server

§ HTTP: gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on top 
of STMP (to send), IMAP (or POP) to retrieve e-mail messages

POP/IMAP Not on exam



83

Quiz: SMTP

Why do we have Sender’s mail server?
Ø User agent can directly connect with recipient mail server 

without the need of sender’s mail server? What’s the catch?

Open a browser and type: www.pollev.com/salil

ANSWER: TO ENSURE THAT THE MAIL CAN BE DELIVERED IF THE 
RECEIVER’S MAIL SERVER IS DOWN MOMENTARILY 



84

Quiz: SMTP

Why do we have a separate Receiver’s mail server?
Ø Can’t the recipient run the mail server on own end system?

Open a browser and type: www.pollev.com/salil

ANSWER: THE RECIPIENT MAY NOT BE ALWAYS CONNECTED



Summary

v Application Layer (Chapter 2)
§ Principles of Network Applications
§ HTTP
§ E-mail

v Next:
§ DNS
§ P2P

85

Reading Exercise for next week
Chapter 2: 2.4 – 2.7


