Computer Networks and Applications

COMP 3331/COMP 9331 Week 2

Application Layer (Principles, Web, Email)

Chapter 2: Sections 2.1-2.3

2. Application Layer: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP

2.4 DNS

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks (CDNs)
- 2.7 socket programming with UDP and TCP

2. Application layer

our goals:

- conceptual, implementation aspects of network application protocols
 - transport-layer service models
 - client-server paradigm
 - peer-to-peer paradigm

- learn about protocols by examining popular application-level protocols
 - HTTP
 - SMTP, IMAP
 - DNS
- programming network applications
 - socket API

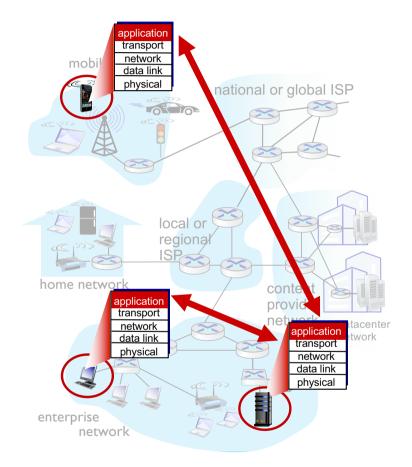
Some network apps

- social networking
- Web
- text messaging
- e-mail
- multi-user network games
- streaming stored video (YouTube, Hulu, Netflix)
- P2P file sharing

- voice over IP (e.g., Skype)
- real-time video conferencing
- Internet search
- remote login
- • •

<u>Q</u>: your favorites?

4

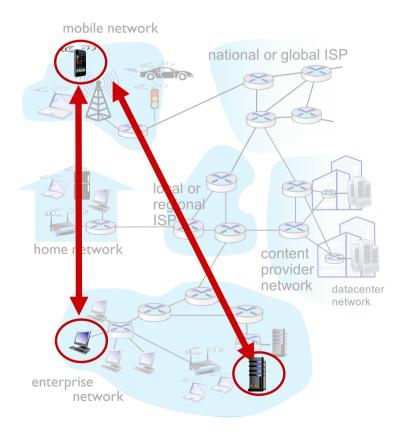

Creating a network app

write programs that:

- run on (different) end systems
- communicate over network
- e.g., web server software communicates with browser software

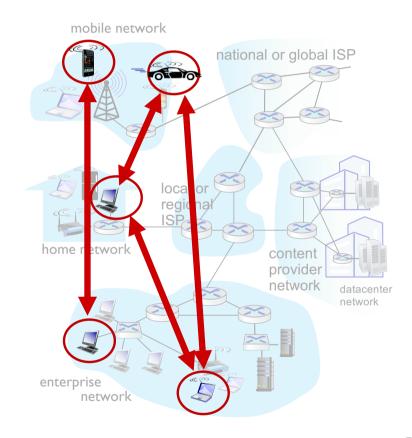
no need to write software for network-core devices

- network-core devices do not run user applications
- applications on end systems allows for rapid app development, propagation


Client-server paradigm

server:

- always-on host
- permanent IP address
- often in data centers, for scaling

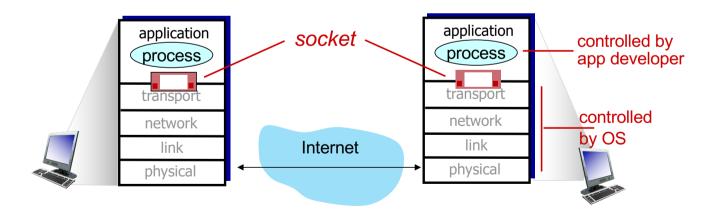

clients:

- contact, communicate with server
- may be intermittently connected
- may have dynamic IP addresses
- do not communicate directly with each other
- examples: HTTP, IMAP, FTP

Peer-peer architecture

- no always-on server
- arbitrary end systems directly communicate
- peers request service from other peers, provide service in return to other peers
 - self scalability new peers bring new service capacity, as well as new service demands
- peers are intermittently connected and change IP addresses
 - complex management
- example: P2P file sharing, blockchain

Processes communicating


- process: program running within
 a host
- within same host, two processes communicate using inter-process communication (defined by OS)
- processes in different hosts communicate by exchanging messages

clients, servers client process: process that initiates communication server process: process that waits to be contacted

 note: applications with P2P architectures have client processes & server processes

Sockets

- process sends/receives messages to/from its socket
- socket analogous to door
 - sending process shoves message out the door
 - sending process relies on transport infrastructure on other side of door to deliver message to socket at receiving process
 - two sockets involved: one on each side

Addressing processes

- to receive messages, process must have identifier
- host device has unique 32-bit IP address
- Q: does IP address of host on which process runs suffice for identifying the process?
 - <u>A</u>: no, *many* processes can be running on same host

- identifier includes both IP address and port numbers associated with process on host.
- example port numbers:
 - HTTP server: 80
 - mail server: 25
- to send HTTP message to gaia.cs.umass.edu web server:
 - IP address: |28.||9.245.|2
 - port number: 80
- more shortly...

An application-layer protocol defines:

- types of messages exchanged,
 - e.g., request, response
- message syntax:
 - what fields in messages & how fields are delineated
- message semantics
 - meaning of information in fields
- rules for when and how processes send & respond to messages

open protocols:

- defined in RFCs, everyone has access to protocol definition
- allows for interoperability
- e.g., HTTP, SMTP, WebRTC
 proprietary protocols:
- e.g., Skype, Zoom, Teams

What transport service does an app need?

data integrity

- some apps (e.g., file transfer, web transactions) require
 100% reliable data transfer
- other apps (e.g., audio) can tolerate some loss

timing

 some apps (e.g., Internet telephony, interactive games) require low delay to be "effective"

throughput

- some apps (e.g., multimedia) require minimum amount of throughput to be "effective"
- other apps ("elastic apps") make use of whatever throughput they get

security

. . .

encryption, data integrity,

Transport service requirements: common apps

application	data loss	throughput	time sensitive?
file transfer/download e-mail	no loss no loss	elastic elastic	no
Web documents real-time audio/video	no loss	elastic audio: 5Kbps-IMbps	no
		video:10Kbps-5Mbps	yes, 10's msec
streaming audio/video	loss-tolerant	same as above	yes, few secs
interactive games	loss-tolerant	Kbps+	yes, 10's msec
text messaging	no loss	elastic	yes and no

Internet transport protocols services

TCP service:

- reliable transport between sending and receiving process
- flow control: sender won't overwhelm receiver
- congestion control: throttle sender when network overloaded
- does not provide: timing, minimum throughput guarantee, security
- connection-oriented: setup required between client and server processes

<u>Q</u>: why bother? Why is there a UDP?

NOTE: More on transport layer later

UDP service:

- unreliable data transfer between sending and receiving process
- does not provide: reliability, flow control, congestion control, timing, throughput guarantee, security, or connection setup.

application layer protocol	transport protocol			
FTP [RFC 959]	TCP			
SMTP [RFC 5321]	ТСР			
HTTP I.I [RFC 7320]	ТСР			
SIP [RFC 3261], RTP [RF 3550], or proprietary	TCP or UDP			
HTTP [RFC 7320], DAS	Н ТСР			
WOW, FPS (proprietary) UDP or TCP			
	Iayer protocol FTP [RFC 959] SMTP [RFC 5321] HTTP I.I [RFC 7320] SIP [RFC 3261], RTP [RF 3550], or proprietary HTTP [RFC 7320], DAS			

Internet transport protocols services

Securing TCP

Vanilla TCP & UDP sockets:

- no encryption
- cleartext passwords sent into socket traverse Internet in cleartext (!)

Transport Layer Security (TLS)

- provides encrypted TCP connections
- data integrity
- end-point authentication

TLS implemented in application layer

 apps use TLS libraries, that use TCP in turn

TLS socket API

- cleartext sent into socket traverse Internet encrypted
- see Chapter 8

Quiz: Transport

Pick the true statement

- A. TCP provides reliability and guarantees a minimum bandwidth
- B. TCP provides reliability while UDP provides bandwidth guarantees
- C. TCP provides reliability while UDP does not
- D. Neither TCP nor UDP provides reliability

Answer: C

Open a browser and type: www.pollev.com/salil

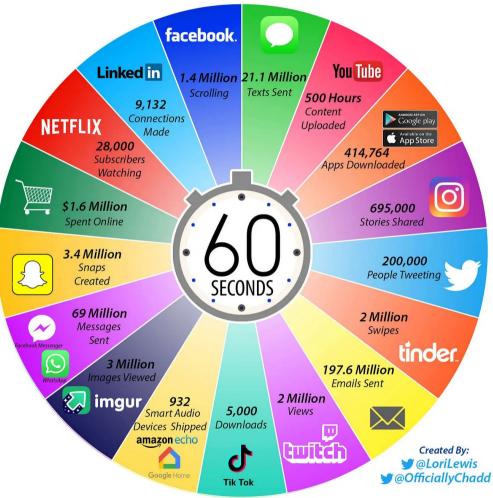
2. Application Layer: outline

- 2.1 principles of network applications2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP

2.4 DNS

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks (CDNs)
- 2.7 socket programming with UDP and TCP

The Web – History



Tim Berners-Lee

- World Wide Web (WWW): a distributed database of "pages" linked through Hypertext Transport Protocol (HTTP)
 - First HTTP implementation 1990
 - Tim Berners-Lee at CERN
 - HTTP/0.9 1991
 - Simple GET command for the Web
 - HTTP/I.0 1992
 - Client/Server information, simple caching
 - HTTP/I.I 1996
 - HTTP2.0 2015

http://info.cern.ch/hypertext/WWW/TheProject.html

2021 This Is What Happens In An Internet Minute

Web and HTTP

First, a quick review...

- web page consists of objects, each of which can be stored on different Web servers
- object can be HTML file, JPEG image, Java applet, audio file,...
- web page consists of base HTML-file which includes several referenced objects, each addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif
host name
path name

Uniform Resource Locator (URL)

protocol://host-name[:port]/directory-path/resource

- protocol: http, ftp, https, smtp etc.
- hostname: DNS name, IP address
- port: defaults to protocol's standard port; e.g., http: 80 https: 443
- directory path: hierarchical, reflecting file system
- resource: Identifies the desired resource

HTTP overview

HTTP: hypertext transfer protocol

- Web's application layer protocol
- client/server model:
 - *client:* browser that requests, receives, (using HTTP protocol) and "displays" Web objects
 - server: Web server sends (using HTTP protocol) objects in response to requests

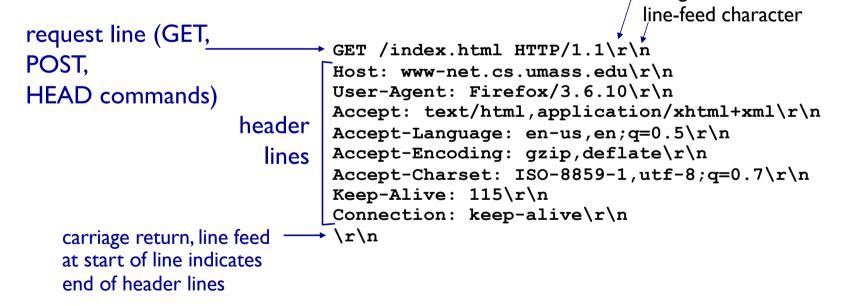
HTTP overview (continued)

HTTP uses TCP:

- client initiates TCP connection (creates socket) to server, port 80
- server accepts TCP connection from client
- HTTP messages (application-layer protocol messages) exchanged between browser (HTTP client) and Web server (HTTP server)
- TCP connection closed

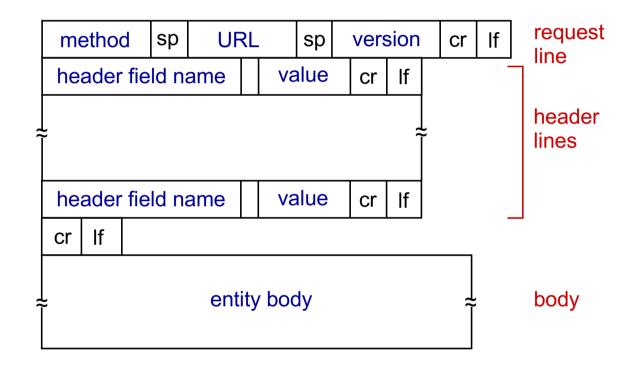
HTTP is "stateless"

 server maintains no information about past client requests


aside

protocols that maintain "state" are complex!

- past history (state) must be maintained
- if server/client crashes, their views of "state" may be inconsistent, must be reconciled


HTTP request message

- two types of HTTP messages: request, response
- HTTP request message:
 - ASCII (human-readable format)

carriage return character

HTTP request message: general format

Other HTTP request messages

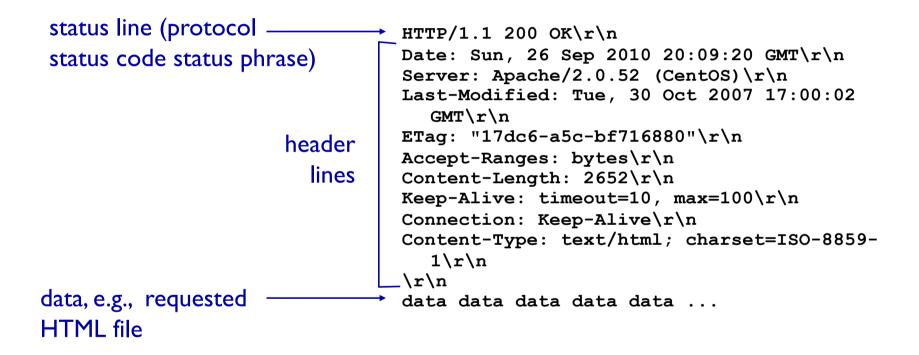
POST method:

- web page often includes form input
- user input sent from client to server in entity body of HTTP POST request message

<u>GET method</u> (for sending data to server):

 include user data in URL field of HTTP GET request message (following a '?'):

www.somesite.com/animalsearch?monkeys&banana


HEAD method:

 requests headers (only) that would be returned if specified URL were requested with an HTTP GET method.

PUT method:

- uploads new file (object) to server
- completely replaces file that exists at specified URL with content in entity body of POST HTTP request message

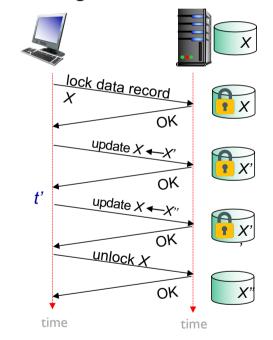
HTTP response message

HTTP response status codes

- status code appears in 1st line in server-to-client response message.
- some sample codes:

200 OK

- request succeeded, requested object later in this message
- **301 Moved Permanently**
 - requested object moved, new location specified later in this message (in Location: field)
- 400 Bad Request
 - request msg not understood by server
- 404 Not Found
 - requested document not found on this server
- 505 HTTP Version Not Supported


HTTP is all text

- Makes the protocol simple
 - Easy to delineate messages (\r\n)
 - (relatively) human-readable
 - No issues about encoding or formatting data
 - Variable length data
- Not the most efficient
 - Many protocols use binary fields
 - Sending "12345678" as a string is 8 bytes
 - As an integer, 12345678 needs only 4 bytes
 - Headers may come in any order
 - Requires string parsing/processing
- Non-text content needs to be encoded

Maintaining user/server state: cookies

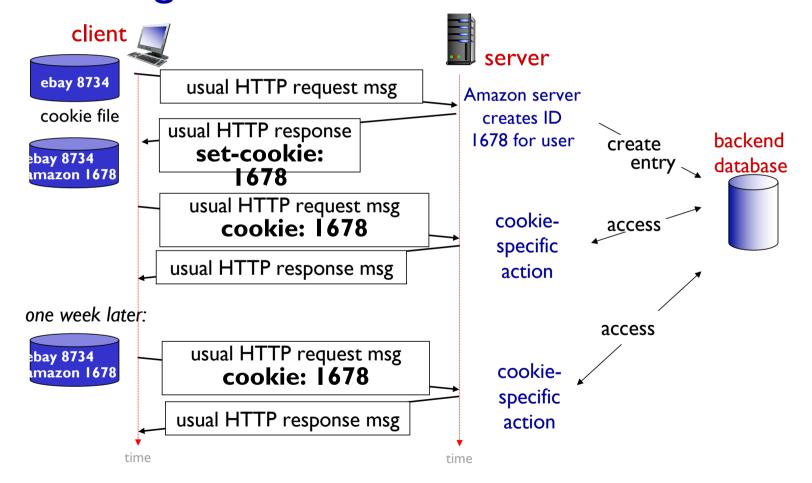
- Recall: HTTP GET/response interaction is *stateless*
- no notion of multi-step exchanges of HTTP messages to complete a Web "transaction"
 - no need for client/server to track "state" of multi-step exchange
 - all HTTP requests are independent of each other
 - no need for client/server to "recover" from a partially-completed-but-nevercompletely-completed transaction

a stateful protocol: client makes two changes to X, or none

Q: what happens if network connection or client crashes at *t*'?

Maintaining user/server state: cookies

Web sites and client browser use cookies to maintain some state between transactions


four components:

- I) cookie header line of HTTP response message
- 2) cookie header line in next HTTP request message
- 3) cookie file kept on user's host, managed by user's browser
- 4) back-end database at Web site

Example:

- Susan uses browser on laptop, visits specific e-commerce site for first time
- when initial HTTP requests arrives at site, site creates:
 - unique ID (aka "cookie")
 - entry in backend database for ID
- subsequent HTTP requests from Susan to this site will contain cookie ID value, allowing site to "identify" Susan

Maintaining user/server state: cookies

HTTP cookies: comments

What cookies can be used for:

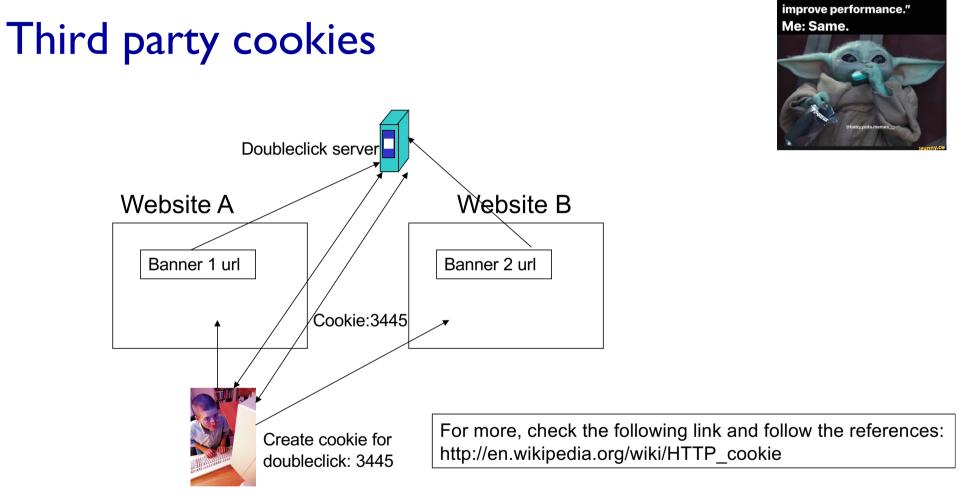
- authorization
- shopping carts
- recommendations
- user session state (Web e-mail)

Challenge: How to keep state:

- protocol endpoints: maintain state at sender/receiver over multiple transactions
- cookies: HTTP messages carry state

cookies and privacy:

 cookies permit sites to learn a lot about you on their site.


aside

 third party persistent cookies (tracking cookies) allow common identity (cookie value) to be tracked across multiple web sites

The Dark Side of Cookies

- Cookies permit sites to learn a lot about you
- You may supply name and e-mail to sites (and more)
- 3rd party cookies (from ad networks, etc.) can follow you across multiple sites
 - Ever visit a website, and the next day ALL your ads are from them ?
 - Check your browser's cookie file (cookies.txt, cookies.plist)
 - Do you see a website that you have never visited
- You COULD turn them off
 - But good luck doing anything on the Internet !!

In practice the banner can be a single pixel (invisible to the user)

Website: "We use cookies to

Performance of HTTP

- Page Load Time (PLT) is an important metric
 - From click (or typing URL) until user sees page
 - Key measure of web performance
- > Depends on many factors such as
 - page content/structure,
 - protocols involved and
 - Network bandwidth and RTT

Performance Goals

- ✤ User
 - fast downloads
 - high availability
- Content provider
 - happy users (hence, above)
 - cost-effective infrastructure
- Network (secondary)
 - avoid overload

Solutions?

- ✤ User
 - fast downloads
 - high availability

Content provider

- happy users (hence, above)
- cost-effective infrastructure
- Network (secondary)
 - avoid overload

Solutions? Improve HTTP to achieve faster ✤ User downloads fast downloads high availability Content provider Caching and Replication happy users (hence, above) cost-effective delivery infrastructure Network (secondary) avoid overload

Solutions?

- ✤ User
 - fast downloads
 - high availability
- Content provider
 - happy users (hence, above)
 - cost-effective delivery infrastructure
- Network (secondary)
 - avoid overload

Exploit economies of scale (Webhosting, CDNs, datacenters)

Improve HTTP to achieve faster downloads

Caching and Replication

41

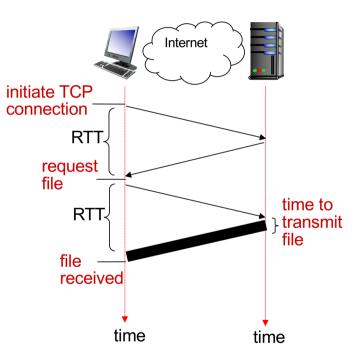
How to improve PLT

- Reduce content size for transfer
 - Smaller images, compression
- Change HTTP to make better use of available bandwidth
 - Persistent connections and pipelining
- Change HTTP to avoid repeated transfers of the same content
 - Caching and web-proxies
- Move content closer to the client
 - CDNs

HTTP Performance

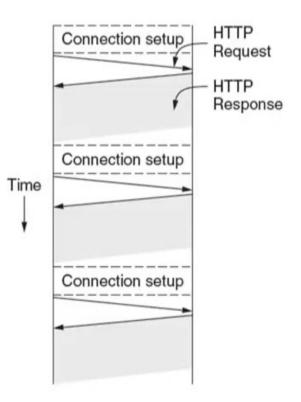
- Most Web pages have multiple objects
 - *e.g.*, HTML file and a bunch of embedded images
- How do you retrieve those objects (naively)?
 - One item at a time
- New TCP connection per (small) object!

non-persistent HTTP

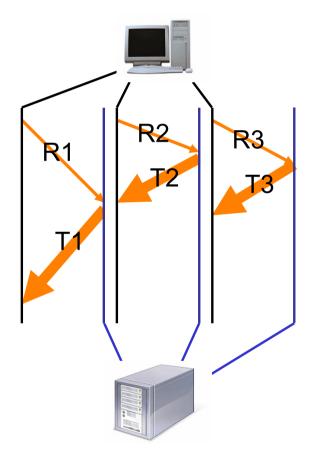

- * at most one object sent over TCP connection
 - connection then closed
- downloading multiple objects required multiple connections

Non-persistent HTTP: response time

RTT (definition): time for a small packet to travel from client to server and back


HTTP response time:

- one RTT to initiate TCP connection (approximate 3-way handshake)
- one RTT for HTTP request and first few bytes of HTTP response to return
- file transmission time
- non-persistent HTTP response time =
 2RTT+ file transmission time


HTTP/I.0

- Non-Persistent: One TCP connection to fetch one web resource
- Fairly poor PLT
- > 2 Scenarios
 - Multiple TCP connections setups to the same server
 - Sequential request/responses even when resources are located on different servers
- Multiple TCP slow-start phases (more in lecture on TCP)

Improving HTTP Performance: Concurrent Requests & Responses

- ✤ Use multiple connections *in parallel*
- Does not necessarily maintain order of responses

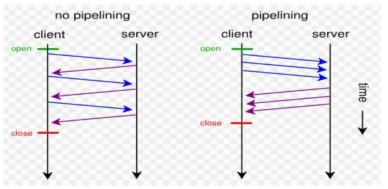
Quiz: Parallel HTTP Connections

What are potential downsides of parallel HTTP connections, i.e., can opening too many parallel connections be harmful and if so in what way?

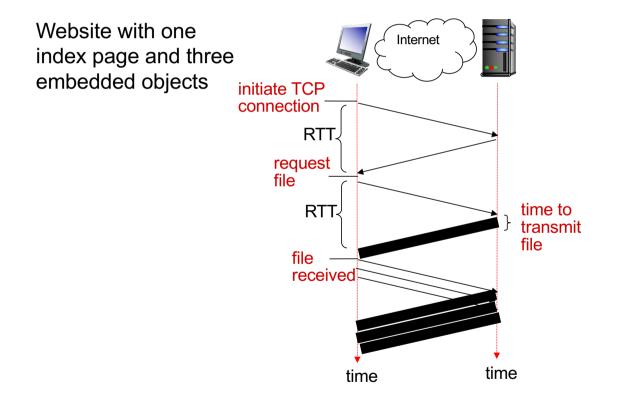
Answer: Increase load on the server – handling parallel TCP connections from multiple clients

Persistent HTTP (HTTP/I.I)

Persistent HTTP


- server leaves TCP connection open after sending response
- subsequent HTTP messages between same client/server are sent over the same TCP connection
- Allow TCP to learn more accurate RTT estimate (APPARENT LATER IN THE COURSE)
- Allow TCP congestion window to increase (APPARENT LATER)
- i.e., leverage previously discovered bandwidth (APPARENT LATER)

Persistent without pipelining:


- client issues new request only when previous response has been received
- one RTT for each referenced object

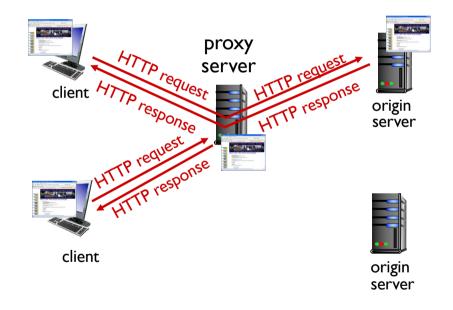
Persistent with pipelining:

- introduced in HTTP/1.1
- client sends requests as soon as it encounters a referenced object
- as little as one RTT for all the referenced objects

HTTP I.I: response time with pipelining

How to improve PLT

- Reduce content size for transfer
 - Smaller images, compression
- > Change HTTP to make better use of available bandwidth
 - Persistent connections and pipelining
- Change HTTP to avoid repeated transfers of the same content
 - Caching and web-proxies
- Move content closer to the client
 - CDNs


Improving HTTP Performance: Caching

- > Why does caching work?
 - Exploit locality of reference
- How well does caching work?
 - Very well, up to a limit
 - Large overlap in content
 - But many unique requests
- > Trend: increase in dynamic content
 - For example, customization of web pages
 - Reduces benefits of caching
 - Some exceptions, for example, video content

Web caches (proxy servers)

Goal: satisfy client request without involving origin server

- user configures browser to point to a Web cache
- browser sends all HTTP requests to cache
 - *if* object in cache: cache returns object to client
 - *else* cache requests object from origin server, caches received object, then returns object to client

Web caches (proxy servers)

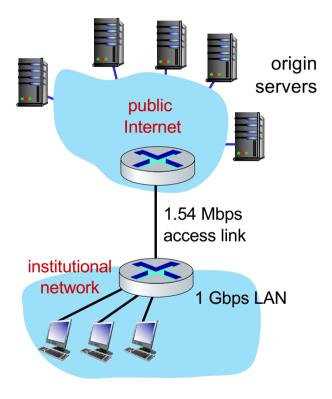
- Web cache acts as both client and server
 - server for original requesting client
 - client to origin server
- typically, cache is installed by ISP (university, company, residential ISP)

Why Web caching?

- reduce response time for client request
 - cache is closer to client
- reduce traffic on an institution's access link
- Internet is dense with caches
 - enables "poor" content providers to more effectively deliver content

Caching example

Scenario:


- access link rate: 1.54 Mbps
- RTT from institutional router to server: 2 sec
- Web object size: 100K bits
- Average request rate from browsers to origin servers: 15/sec
 - average data rate to browsers: 1.50 Mbps

Performance:

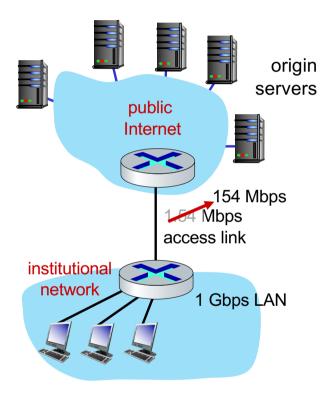
- LAN utilization: .0015
- access link utilization = .97 utilization!
- end-end delay = Internet delay + access link delay + LAN delay
 - = 2 sec + minutes + usecs

problem: large

delays at high

Caching example: buy a faster access link

Scenario:


J 54 Mbps

- access link rate: 1.54 Mbps
- RTT from institutional router to server: 2 sec
- Web object size: 100K bits
- Avg request rate from browsers to origin servers: 15/sec
 - avg data rate to browsers: 1.50 Mbps

Performance:

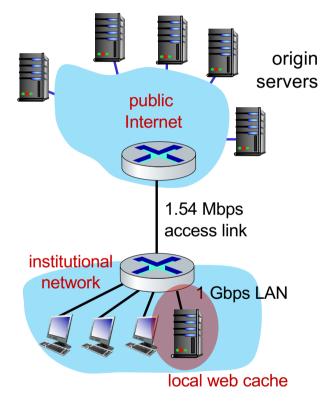
- LAN utilization: .0015
- access link utilization = .97 → .0097
- end-end delay = Internet delay + access link delay + LAN delay
 = 2 sec + minutes + usecs

Cost: faster access link (expensive!)

Caching example: install a web cache

How to compute link

utilization, delay?


Scenario:

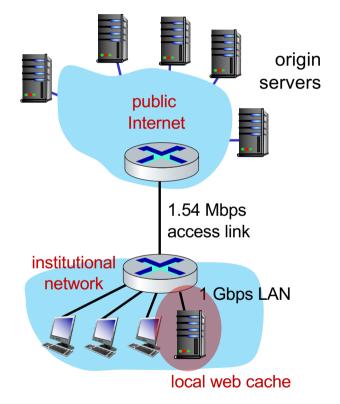
- access link rate: 1.54 Mbps
- RTT from institutional router to server: 2 sec
- Web object size: 100K bits
- Avg request rate from browsers to origin servers: 15/sec
 - avg data rate to browsers: 1.50 Mbps

Performance:

- LAN utilization: .?
- access link utilization = ?
- average end-end delay = ?

Cost: web cache (cheap!)

Caching example: install a web cache


Calculating access link utilization, endend delay with cache:

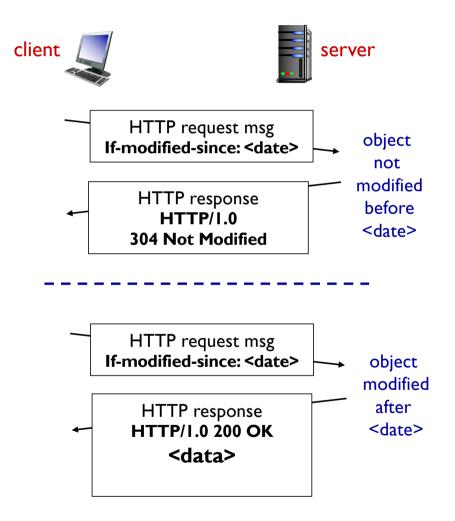
- suppose cache hit rate is 0.4: 40% requests satisfied at cache; 60% requests satisfied at origin
- access link: 60% of requests use access link
- data rate to browsers over access link

- utilization = 0.9/1.54 = .58
- average end-end delay
 - = 0.6 * (delay from origin servers)

+ 0.4 * (delay when satisfied at cache)

= 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs

lower average end-end delay than with 154 Mbps link (and cheaper too!)


Conditional GET

Goal: don't send object if cache has up-to-date cached version

- no object transmission delay
- lower link utilization
- cache: specify date of cached copy in HTTP request

If-modified-since: <date>

 server: response contains no object if cached copy is up-to-date: HTTP/I.0 304 Not Modified

Example Cache Check Request

GET / HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT

If-None-Match: "7a11f-10ed-3a75ae4a"

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)

Host: www.intel-iris.net

Connection: Keep-Alive

Example Cache Check Response

HTTP/1.1 304 Not Modified Date: Tue, 27 Mar 2001 03:50:51 GMT Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1 OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24 Connection: Keep-Alive

Keep-Alive: timeout=15, max=100

ETag: "7a11f-10ed-3a75ae4a"

Etag: Usually used for dynamic content. The value is often a cryptographic hash of the content.

Improving HTTP Performance: Replication

- Replicate popular Web site across many machines
 - Spreads load on servers
 - Places content closer to clients
 - Helps when content isn't cacheable
- > Problem:
 - Want to direct client to a particular replica
 - Balance load across server replicas
 - Pair clients with nearby servers
 - Expensive
- Common solution:
 - DNS returns different addresses based on client's geo-location, server load, etc.

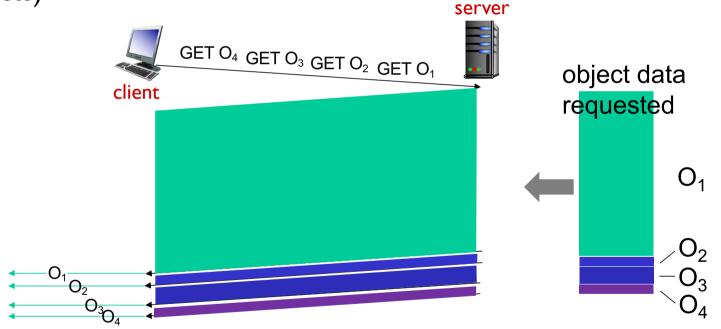
Improving HTTP Performance: CDN

- > Caching and replication as a service
- > Large-scale distributed storage infrastructure (usually) administered by one entity
 - e.g., Akamai has servers in 20,000+ locations
- Combination of (pull) caching and (push) replication
 - **Pull:** Direct result of clients' requests
 - **Push:** Expectation of high access rate
- > Also do some processing
 - Handle dynamic web pages
 - Transcoding

What about HTTPS?

- > HTTP is insecure
- > HTTP basic authentication: password sent using base64 encoding (can be readily converted to plaintext)
- HTTPS: HTTP over a connection encrypted by Transport Layer Security (TLS)
- > Provides:
 - Authentication
 - Bidirectional encryption
- > Widely used in place of plain vanilla HTTP

HTTP/2


Key goal: decreased delay in multi-object HTTP requests

<u>HTTPI.I:</u> introduced multiple, pipelined GETs over single TCP connection

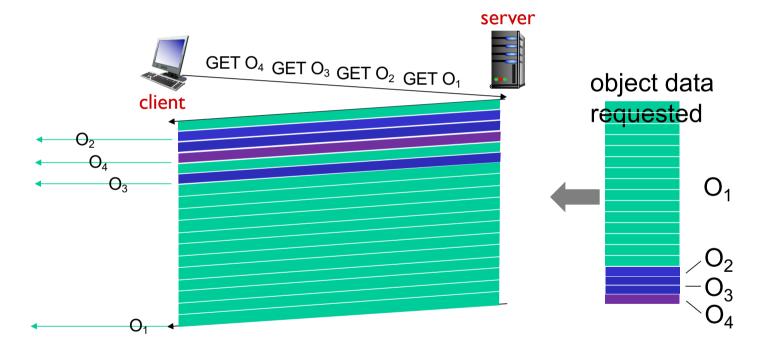
- server responds in-order (FCFS: first-come-first-served scheduling) to GET requests
- with FCFS, small object may have to wait for transmission (head-ofline (HOL) blocking) behind large object(s)
- loss recovery (retransmitting lost TCP segments) stalls object transmission

HTTP/2: mitigating HOL blocking

HTTP I.I: client requests I large object (e.g., video file, and 3 smaller objects)

objects delivered in order requested: O_2 , O_3 , O_4 wait behind O_1

HTTP/2

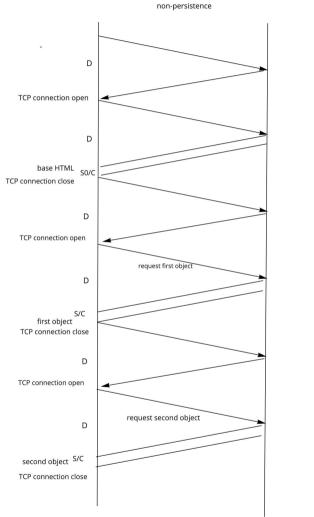

Key goal: decreased delay in multi-object HTTP requests

<u>HTTP/2:</u> [RFC 7540, 2015] increased flexibility at server in sending objects to client:

- methods, status codes, most header fields unchanged from HTTP 1.1
- transmission order of requested objects based on client-specified object priority (not necessarily FCFS)
- push unrequested objects to client
- divide objects into frames, schedule frames to mitigate HOL blocking

HTTP/2: mitigating HOL blocking

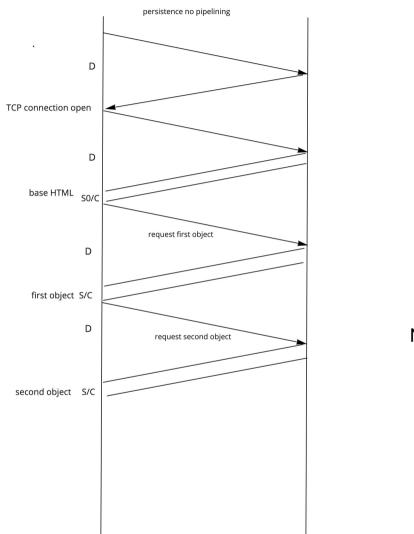
HTTP/2: objects divided into frames, frame transmission interleaved


 O_2 , O_3 , O_4 delivered quickly, O_1 slightly delayed

Quiz: HTTP (1)

Consider an HTML page with a base file of size S_0 bits and N inline objects each of size S bits. Assume a client fetching the page across a link of capacity C bits/s and RTT of D. How long does it take to download the page using **non-persistent HTTP (without parallelism)**?

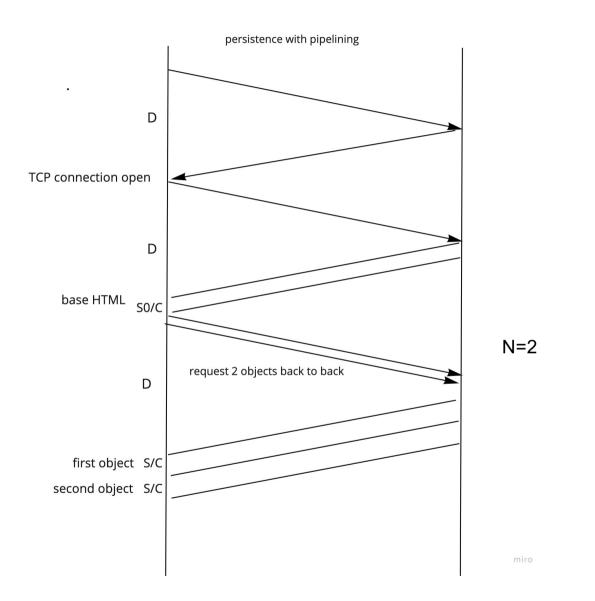
- A. $D + (S_0 + NS)/C$
- B. $2D + (S_0 + NS)/C$
- C. N(D + S/C) Answer: D (see timing diagram on next page for N = 2)
- D. $2D + S_0/C + N(2D + S/C)$
- E. $2D + S_0/C + N(D + S/C)$



Quiz: HTTP (2)

Consider an HTML page with a base file of size S_0 bits and N inline objects each of size S bits. Assume a client fetching the page across a link of capacity C bits/s and RTT of D. How long does it take to download the page using **persistent HTTP (without parallelism or pipelining)**?

- A. $2D + (S_0 + NS)/C$
- B. $3D + (S_0 + NS)/C$
- C. N(D + S/C) Answer: E (see timing diagram on next page for N = 2)
- D. $2D + S_0/C + N(2D + S/C)$
- E. $2D + S_0/C + N(D + S/C)$



Quiz: HTTP (3)

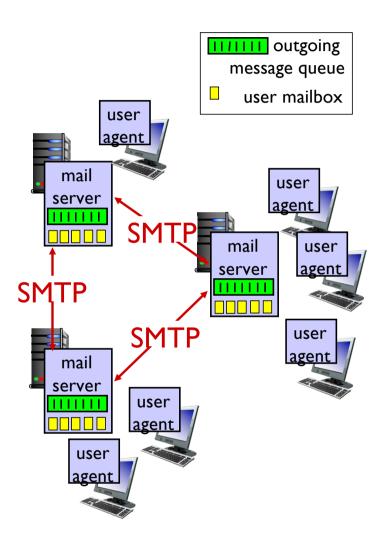
Consider an HTML page with a base file of size S_0 bits and N inline objects each of size S bits. Assume a client fetching the page across a link of capacity C bits/s and RTT of D. How long does it take to download the page using **persistent HTTP with pipelining**?

- A. $2D + (S_0 + NS)/C$
- B. $4D + (S_0 + NS)/C$
- C. N(D + S/C) Answer: D (see timing diagram on next page for N = 2)
- D. $3D + S_0/C + NS/C$
- E. $2D + S_0/C + N(D + S/C)$

2. Application Layer: outline

- 2.1 principles of network applications2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, IMAP
- 2.4 DNS

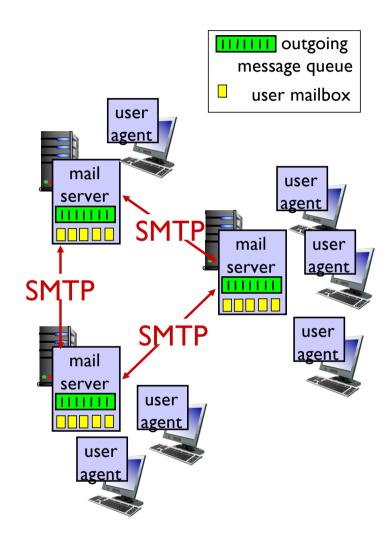
- 2.5 P2P applications
- 2.6 video streaming and content distribution networks (CDNs)
- 2.7 socket programming with UDP and TCP


E-mail

Three major components:

- user agents
- mail servers
- simple mail transfer protocol: SMTP

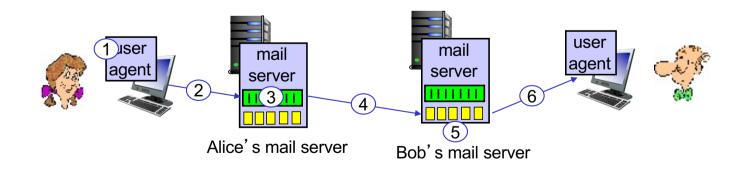
User Agent


- a.k.a."mail reader"
- composing, editing, reading mail messages
- e.g., Outlook, iPhone mail client
- outgoing, incoming messages stored on server

E-mail: mail servers

mail servers:

- mailbox contains incoming messages for user
- message queue of outgoing (to be sent) mail messages
- SMTP protocol between mail servers to send email messages
 - client: sending mail server
 - "server": receiving mail server


E-mail: the RFC (5321)

- uses TCP to reliably transfer email message from client (mail server initiating connection) to server, port 25
- direct transfer: sending server (acting like client) to receiving server
- three phases of transfer
 - handshaking (greeting)
 - transfer of messages
 - closure
- command/response interaction (like HTTP)
 - commands:ASCII text
 - response: status code and phrase
- messages must be in 7-bit ASCI

Scenario: Alice sends e-mail to Bob

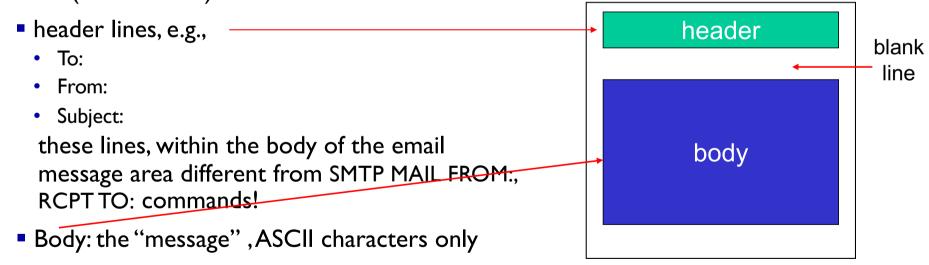
- I) Alice uses UA to compose e-mail message "to" bob@someschool.edu
- 2) Alice's UA sends message to her mail server; message placed in message queue
- 3) client side of SMTP opens TCP connection with Bob's mail server

- 4) SMTP client sends Alice's message over the TCP connection
- 5) Bob's mail server places the message in Bob's mailbox
- 6) Bob invokes his user agent to read message

Sample SMTP interaction

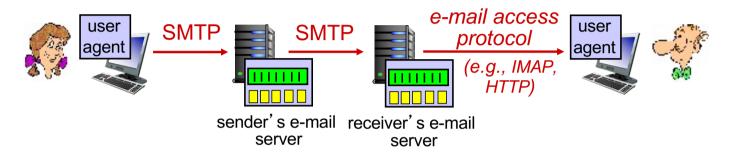
S: 220 hamburger.edu C: HELO crepes.fr S: 250 Hello crepes.fr, pleased to meet you C: MAIL FROM: <alice@crepes.fr> S: 250 alice@crepes.fr... Sender ok C: RCPT TO: <bob@hamburger.edu> S: 250 bob@hamburger.edu ... Recipient ok C: DATA S: 354 Enter mail, end with "." on a line by itself C: Do you like ketchup? C: How about pickles? C: . S: 250 Message accepted for delivery C: QUIT S: 221 hamburger.edu closing connection

SMTP: closing observations


comparison with HTTP:

- HTTP: pull
- SMTP: push
- both have ASCII command/response interaction, status codes
- HTTP: each object encapsulated in its own response message
- SMTP: multiple objects sent in multipart message

- SMTP uses persistent connections
- SMTP requires message (header & body) to be in 7-bit ASCII
- SMTP server uses CRLF.CRLF to determine end of message


Mail message format

SMTP: protocol for exchanging e-mail messages, defined in RFC 531 (like HTTP) RFC 822 defines *syntax* for e-mail message itself (like HTML)

POP/IMAP Not on exam

Mail access protocols

- SMTP: delivery/storage of e-mail messages to receiver's server
- mail access protocol: retrieval from server
 - IMAP: Internet Mail Access Protocol [RFC 3501]: messages stored on server, IMAP provides retrieval, deletion, folders of stored messages on server
- HTTP: gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on top of STMP (to send), IMAP (or POP) to retrieve e-mail messages

Quiz: SMTP

Why do we have Sender's mail server?

User agent can directly connect with recipient mail server without the need of sender's mail server? What's the catch?

ANSWER: TO ENSURE THAT THE MAIL CAN BE DELIVERED IF THE RECEIVER'S MAIL SERVER IS DOWN MOMENTARILY

Open a browser and type: www.pollev.com/salil

Quiz: SMTP

Why do we have a separate Receiver's mail server?

> Can't the recipient run the mail server on own end system?

ANSWER: THE RECIPIENT MAY NOT BE ALWAYS CONNECTED

Open a browser and type: www.pollev.com/salil

Summary

- Application Layer (Chapter 2)
 - Principles of Network Applications
 - HTTP
 - E-mail
- Next:
 - DNS
 - P2P

Reading Exercise for next week Chapter 2: 2.4 – 2.7