
	 1	

COMP3331/9331 Computer Networks and Applications

Assignment for Term 3, 2021

Version 2.0

Due: 11:59 am (noon) Friday, 19 November 2021 (Week 10)

1. Change Log

Version 1.0 released on 5th October 2021.
Version 2.0 released on 18th October 2021: when a user timeouts, the notification that the user has
logged out should be sent to all other users.

2. Goal and learning objectives

Instant messaging applications such as WhatsApp, WeChat, Telegram, Signal, etc. are widely used
with millions of subscribers participating in them globally. In this assignment, you will have the
opportunity to implement your own version of an instant messaging application. In addition to basic
messaging functionality, you will also implement many additional services that are available in many
of the aforementioned applications. Your application is based on a client server model consisting of
one server and multiple messaging clients. The clients communicate using TCP (UDP cannot be
used for this assignment). The server is mainly used to authenticate the clients and direct the
messages (online or offline) between clients. Besides, the server also has to support certain additional
functions (presence notification, blacklisting, timeout, etc.). You should also implement functionality
that allows clients to send peer-to-peer messages to each other that bypasses the server.

2.1 Learning Objectives

On completing this assignment, you will gain sufficient expertise in the following skills:

1. Detailed understanding of how instant messaging services work.

2. Expertise in socket programming.

3. Insights into designing an application layer protocol.

3. Assignment Specification

The assignment is worth 20 marks. The specification is structured in two parts. The first part covers
the basic interactions between the clients and server and includes functionality for clients to
communicate with each other through the server. The second part asks you implement additional
functionality whereby two users can exchange messages with each other directly (i.e. bypassing the
server) in a peer-to-peer fashion. This first part is self-contained (Sections 3.1-3.3) and is worth 14
marks. Implementing peer-to-peer messaging (Section 3.4) is worth 6 marks. CSE students are
expected to implement both functionalities. Non-CSE students are only required to implement the
first part (i.e. no peer-to-peer messaging). The marking guidelines are thus different for the two

Updates to the assignment, including any corrections and clarifications, will be posted on the
subject website. Please make sure that you check the subject website regularly for updates.

	 2	

groups and are indicated in Section 7.

Non-CSE Student Version: The rationale for this option is that students enrolled in a program that
does not include a computer science component have had very limited exposure to programming and
in particular working on complex programming assignments. A Non-CSE student is a student who is
not enrolled in a CSE program (single or double degree). Examples would include students enrolled
exclusively in a single degree program such as Mechatronics or Aerospace or Actuarial Studies or
Law. Students enrolled in dual degree programs that include a CSE program as one of the
degrees do not qualify. Any student who meets this criterion and wishes to avail of this option
MUST email cs3331@cse.unsw.edu.au to seek approval before 5pm, 15th October (Friday, Week
5). We will assume by default that all students are attempting the CSE version of the assignment
unless they have sought explicit permission. No exceptions.

The assignment includes 2 major modules, the server program, and the client program. The server
program will be run first followed by multiple instances of the client program (Each instance supports
one client). They will be run from different terminals on the same machine (so you can use localhost,
i.e., 127.0.0.1 as the IP address for the server and client in your program). All interaction with the
clients will be through a command line interface.

3.1. Server

The server has the following responsibilities -

User Authentication -

You may assume that a credentials file called credentials.txt will be available in the current working
directory of the server with the correct access permissions set (read and write). This file is NOT
available at the client. The file will contain username and passwords of authorised users. They contain
uppercase characters (A-Z), lowercase characters (a-z), digits (0-9) and special characters
(~!@#$%^&*_-+=`|\(){}[]:;"'<>,.?/). An example credentials.txt file is provided on the assignment
page. We will use a different file for testing so DO NOT hardcode this information in your program.
You may assume that each username and password will be on a separate line and that there will be
one white space separating the two. There will only be one password per username. There will be no
empty lines in this file.

Upon execution, a client should first setup a TCP connection with the server. Assuming the
connection is successful, the client should prompt the user to enter a username. The username should
be sent to the server. The server should check the credentials file (credentials.txt) for a match. If the
username exists, the server sends a confirmation message to the client. The client prompts the user to
enter a password. The password is sent to the server, which checks for a match with the stored
password for this user. The server sends a confirmation if the password matches or an error message
in the event of a mismatch. An appropriate message (welcome or error) is displayed to the user. In
case of a mismatch, the client is asked to enter the password again (see discussion on blocking later).
If the username does not exist, it is assumed that the user is creating a new account and the sever
sends an appropriate message to the client. The client prompts the user to enter a new password. You
may assume the password format is as explained above (no need to check). The password is sent to
the server. The server creates a new username and password entry in the credentials file (appending
it as the last entry). A confirmation is sent to the client. The client displays an appropriate welcome
message to the user. You should make sure that write permissions are enabled for the credentials.txt
file (type “chmod +w credentials.txt” at a terminal in the current working directory of the
server). After successful authentication, the client is considered as logged in (i.e., online).

	 3	

When your assignment is tested with multiple concurrent clients, the server should also check that a
new client that is authenticating with the server does not attempt to login with a username that is
already being used by another active client (i.e., a username cannot be used concurrently by two
clients). The server should keep track of all active users and check that the username provided by an
authenticating client does not match with those in this list. If a match is found, then a message to this
effect should be sent to the client and displayed at the prompt for the user and they should be prompted
to enter a username.

As noted above, on entering an invalid password, the user is prompted to retry. After 3 consecutive
failed attempts for a particular username, this user is blocked for a duration of block_duration seconds
(block_duration is a command line argument supplied to the server) and cannot login during this
duration. The client should quit in this instance.

Timeout - The server should check that all logged on users are active. If the server detects that the
user has not issued any valid command for interacting with the server or for peer-to-peer messaging
for a period of timeout seconds (timeout is a command line argument supplied to the server), then the
server should automatically log this user out. The receipt of a message or typing an invalid command
does not count. There are several ways in which you can implement the timeout mechanism. We will
leave the design to you.

Presence Broadcasts - The server should notify the presence/absence of other users logged into the
server, i.e., send a broadcast notification to all online users when a user logs in and logs out. Note
that, when a user is logged off due to timeout, a broadcast notification is sent to all online users.

List of online users - The server should provide a list of users that are currently online in response
to such a query from a user.

Online history – The sever should provide a list of users that logged in for a user specified time in
the past (e.g., users who logged in within the past 15 minutes).

Message Forwarding - The server should forward each instant message to the correct recipient
assuming they are online.

Offline Messaging - When the recipient of a message is not logged in (i.e. is offline), the message
will be saved by the server. When the recipient logs in next, the server will send all the unread
messages stored for that user (timestamps are not required).

Message Broadcast – The server should allow a user to broadcast a message to all online users.
Offline messaging is not required for broadcast messages.

Blacklisting - The server should allow a user to block / unblock any other user. For example, if user
A has blocked user B, B can no longer send messages to A i.e. the server should intercept such
messages and inform B that the message cannot be forwarded. Blocked users also do not get presence
notifications i.e., B will not be informed each time A logs in or logs out. Blocked users are also unable
to check the online status of the user blocking them, i.e., B will not be able to see if A is online
currently or in the past (i.e., online history).

While marking, the server will be executed first and will remain online for the entire duration of the
tests. We will not abruptly kill the server or client processes (CTRL-C). The server is not expected to
maintain state from previous executions. When it is executed, it is assumed that no users are active.

3.2. Client

	 4	

The client should interact with the user via the command line. The client has the following
responsibilities -

Authentication - The client should provide a login prompt to enable the user to authenticate with the
server. The authentication process was discussed in detail earlier. 

Message - The client should allow the user to send a message to any other user and display messages
sent by other users. The client should also allow the user to send a broadcast message to all online
users. The message may contain uppercase characters (A-Z), lowercase characters (a-z), digits (0-9),
special characters (~!@#$%^&*_-+=`|\(){}[]:;"'<>,.?/) and white spaces. During marking we will use
short messages that are a few words long.

Notifications - The client should display presence notifications sent by the server about users logging
in and out from the server.

Find users online - The client should provide a way for the user to obtain a list of all the users
currently online from the server.

Find online history – The client should provide a way for the user to obtain a list of all users who
had logged in within a user specified time period.

Blacklist – The client should allow a user to block a user from sending any further messages, receive
presence notifications or check if they are currently online or were online in the past. The client
should also allow a user to unblock a user that was earlier blocked.

3.3 Commands supported by the client

After a user is logged in, the client should support all the commands shown in the table below. For
the following, assume that commands were run by user Yoda. You may assume that during marking
the commands will be issued in the correct format as noted below with the appropriate arguments and
a single white space between arguments. The <message> can however contain multiple words
separated by white spaces. The message can contain uppercase characters (A-Z), lowercase characters
(a-z), digits (0-9) and special characters (~!@#$%^&*_-+=`|\(){}[]:;"'<>,.?/). For commands where
<user> is specified, the server should check if this <user> is present in the credentials file. If an entry
is not found (referred to as an invalid user), an appropriate error message should be displayed.

Command Description

message <user> <message> Send <message> to <user> through the server. If the user is
online then deliver the message immediately, else store the
message for offline delivery. If <user> has blocked Yoda, then a
message to that effect should be displayed for Yoda. If the <user>
is invalid or is self (Yoda) then an appropriate error message
should be displayed. The <message> used in our tests will be a
few words at most.

broadcast <message> Send <message> to all online users except Yoda and those users
who have blocked Yoda. Inform Yoda that message could not be
sent to some recipients.

whoelse This should display the names of all users that are currently
online excluding Yoda and any users who may have blocked

	 5	

Yoda. Users can be displayed in any order.

whoelsesince <time> This should display the names of all users who were logged in at
any time within the past <time> seconds excluding Yoda and any
users who may have currently blocked Yoda. Note that this, may
include users that may currently be offline. If <time> is greater
than the time since when the server has been running, then all
users who logged in since the sever initiation time should be
listed. This suggests that you will need to keep a login history
since the start of the server. Users can be displayed in any order.

block <user> blocks the <user> from sending messages to Yoda, receive
presence notifications about Yoda and be able to check if Yoda
is currently online or Yoda’s online history. A message should be
displayed to Yoda confirming the blocking action. <user> must
not be informed that Yoda has blocked them. If <user> is self
(i.e., Yoda) or invalid, then an appropriate error message should
be displayed. It is not necessary that <user> is currently online.
One user may block multiple other users.

unblock <user> unblocks the <user> who has been previously blocked by Yoda
and reverse all the actions manifested by the previous block
command. A message should be displayed to Yoda confirming
the unblocking action. If <user> is self (i.e., Yoda) or is invalid
or was not previously blocked, then an appropriate error message
should be displayed. It is not necessary that <user> is currently
online.

logout log out user Yoda. While marking, we will ONLY assume that
users will exit by explicitly using the logout command. We will
not abruptly kill any client (CTRL-C).

Any command that is not listed above should result in an error message being displayed to the user.
The interaction with the user should be via the terminal (i.e., command line). All messages must be
displayed in the same terminal. There is no need to create separate terminals for messaging with
different users.

We do not mandate the exact text that should be displayed by the client to the user for the various
messages. However, you must make sure that the displayed text is easy to comprehend. Please make
sure that you DO NOT print any debugging information on the client terminal.

The server program should not print anything at the terminal. If you wish to print to the terminal for
debugging purposes, then include an optional debug flag (e.g. –d) as a command line argument for
the server. When this optional argument is included, your server can print debugging information to
the terminal. This same practice could also be employed for the client program.

Some examples illustrating client server interaction using the above commands are provided in
Section 8.

3.4 Peer to Peer Messaging

	 6	

Some users may prefer to have some privacy during messaging. They may want to message their
friends directly without all their conversation being routed via the server. A peer-to-peer messaging
client is a good solution for this scenario. In addition to the above functionalities, you should
implement peer-to-peer messaging (also referred to as private messaging). Private messages should
be exchanged over a TCP connection between the two clients. Assume that client A wants to setup
a private chat with client B. Setting up a TCP connection between the two will require certain
information about B to be communicated to A via the server. We will not specify it here because there
are a few different ways to do that. We will leave the design to you.

To implement this functionality your client should support the following commands (in addition to
those listed in Section 3.3). For the following, assume that commands were run by user Yoda. The
notion of an invalid use is the same as described in Section 3.3. A p2p messaging session can only be
started with an online user.

Command Description

startprivate <user> This command indicates that user Yoda wishes to commence p2p
messaging with <user>. The server should first ask <user> if they
are willing to engage in a private chat with Yoda. If <user>
declines, then the server should inform Yoda accordingly. If
<user> agrees, then Yoda’s client should obtain certain
information about <user>’s client from the server. If <user> has
blocked Yoda, then the server need not query <user> and an
appropriate error message should be displayed to Yoda. If <user>
is offline, invalid, or self then appropriate error messages should
be displayed to Yoda. If the private chat session can proceed,
Yoda’s client should establish a TCP connection with <user>’s
client. A confirmation message should be displayed to Yoda. This
TCP connection should remain active till the private chat is
stopped or one the user logs off.

private <user> <message> Send <message> to <user> directly without routing through the
server. If the user is no longer online at the port obtained via the
previous command, then a message to that effect should be
displayed to Yoda. If Yoda has not executed startprivate before
this command, then an appropriate error message should be
displayed. Note that, Yoda may execute startprivate <user>
before <user> blocks Yoda. In this instance, Yoda can still use
this command to send a message to <user>. Other error messages
(e.g. offline, invalid, etc.) are consistent with those indicated in
the above command.

stopprivate <user> This command indicates that user Yoda wishes to discontinue the
p2p messaging session with <user>. Either user can issue this
command (i.e., it doesn’t have to be the one who initiated the
private chat). A message to this effect should be displayed on the
terminal for <user>. The TCP connection established between the
two end points should be closed. An appropriate error message
should be displayed to Yoda if there does not exist an active p2p
messaging session with <user> (i.e, startprivate was not executed
with this <user>).

	 7	

Note that, a user that actively issues p2p messaging commands must be assumed to be active in the
context of the timeout functionality mentioned in Section 3.1.

When a user logs off (or is timed out), any on-going p2p messaging session must conclude. A message
to this effect must be displayed to the other user involved in the p2p messaging session.

While marking your assignment, we will initiate at most one p2p messaging session from each
client at any given time. We may test the regular commands (not specific to p2p messaging) and
the p2p messaging specific commands interchangeably. In other words, Yoda may be
simultaneously exchanging messages privately with Leia and via the server with Luke (or even
Leia). We may also test a scenario wherein Yoda establishes a p2p messaging session with Luke,
closes this session and starts a new p2p messaging session with Leia. If Yoda has an ongoing
p2p messaging session with Luke, we will not be testing the scenario where Leia tries to setup a
p2p messaging session with either Yoda or Luke.

3.5 File Names & Execution

The main code for the server and client should be contained in the following files: server.c, or
Server.java or server.py, and client.c or Client.java or client.py. You are free
to create additional files such as header files or other class files and name them as you wish.

The server should accept the following three arguments:

• server_port: this is the port number which the server will use to communicate with the
clients. Recall that a TCP socket is NOT uniquely identified by the server port number. So, it
is possible for multiple TCP connections to use the same server-side port number.

• block_duration: this is the duration in seconds for which a user should be blocked after
three unsuccessful authentication attempts.

• timeout: this is the duration in seconds of inactivity after which a user is logged off by the
server.

The server should be executed before any of the clients. It should be initiated as follows:

If you use Java:
java Server server_port block_duration timeout

If you use C:
./server server_port block_duration timeout

If you use Python:
python server.py server_port block_duration timeout

The client should accept the following argument:

• server_port: this is the port number being used by the server. This argument should be the
same as the first argument of the server.

Note that, you do not have to specify the port to be used by the client. The client program should
allow the operating system to pick a random available port. Each client should be initiated in a
separate terminal as follows:

If you use Java:
java Client server_port

	 8	

If you use C:
./client server_port

If you use Python:
python client.py server_port

Note: The server and multiple clients should all be executed on the same machine on separate
terminals. In the client program, use 127.0.0.1 (localhost) as the server IP address.
3.6 Program Design Considerations

Server Design

The server code will be more involved compared to the client. When the server starts up, none of the
users are logged on. The server needs to support multiple clients simultaneously. A robust way to
achieve this is to use multithreading. In this approach, you will need a main thread to listen for new
connections. This can be done using the socket accept function within a while loop. This main thread
is your main program. For each connected client, you will need to create a new thread. When
interacting with one client, the server should first complete the authentication process. Once a user is
authenticated, the server should wait for a request to action a particular command, take necessary
action, respond accordingly to the client, and then wait for the next request. Note that, you will need
to define several data structures for managing the state of the users. While we do not mandate the
specifics, it is critical that you invest some time into thinking about the design of your data structures.
Example of state information includes (this is not an exhaustive list) the total # of valid users (and
their usernames), total # of online users (and their usernames), the time when each user logged on,
the time when each user was last active, the blacklist for each user, offline messages for delivery
when the specified user logs on. On start-up the server can determine the total # of valid users (by
reading the entries in the credentials file). However, it is possible for new user accounts to be created.
Thus, you cannot assume a fixed number of users upfront for defining data structures. As you may
have learnt in your programming courses, it is not good practice to arbitrarily assume a fixed upper
limit on the number of users. Thus, we strongly recommend allocating memory dynamically for all
the data structures that are required. You will also need to use a timer to implement the timeout
functionality. Once a client either times out or exits by executing the logout command, the
corresponding thread should also be terminated after closing any active TCP connections. You should
be particularly careful about how multiple threads will interact with the various data structures. Code
snippets for multi-threading in all supported languages are available on the course webpage.

Client Design

The client program should be a little less complicated. The client needs to interact with the user
through the command line interface and print meaningful messages. Section 8 provides some
examples. You do not have the use the exact same text as shown in the samples. Upon initiation, the
client should establish a TCP connection with the server and execute the user authentication process.
Following authentication, the client should wait for the use to issue a command. Almost all commands
require simple request/response interactions between the client with the server. Note that, the client
does not need to maintain any significant state, since the server manages all state maintenance that is
necessary. Implementing p2p messaging would require establishing a new TCP connection between
the two peers. One way to accomplish this would to be use multithreading. Another approach could
be to use non-blocking or asynchronous I/O by using polling, i.e., select().

4. Additional Notes
• This is NOT a group assignment. You are expected to work on this individually.

	 9	

• Tips on getting started: The best way to tackle a complex implementation task is to do it in
stages. A good place to start would be to implement the functionality to allow a single user to
login with the server. Next, add the blocking functionality for 3 unsuccessful attempts. You could
then proceed to the timeout functionality (i.e. automatically logout a user after inactivity. Then
extend this to handle multiple clients. Once your server can support multiple clients, implement
the functions for presence notification, whoelse and whoelsesince. Your next milestone should be
to implement messaging (via the server) between users. Start with broadcast, then move to online
messaging and finally offline messaging. Once you have ensured that all of the above are working
perfectly, add the blacklist functionality. Note that, this will require changing the implementation
of some of the functionality that you have already implemented. Once messaging via the server
is working perfectly, you can move on to peer-to-peer messaging. It is imperative that you
rigorously test your code to ensure that all possible (and logical) interactions can be correctly
executed. Test, test and test.

• Application Layer Protocol: Remember that you are implementing an application layer protocol
for realising instant messaging services. You will have to design the format (both syntax and
semantics) of the messages exchanged between the client and server and the actions taken by each
entity on receiving these messages. We do not mandate any specific requirements with regards
the design of your application layer protocol. We are only considered with the end result, i.e. the
functionality outlined above. You may wish to revisit some of the application layer protocols that
we have studied (HTTP, SMTP, etc.) to see examples of message format, actions taken, etc.

• Transport Layer Protocol: You must use TCP for transferring messages between each client
and server and between two clients for p2p messaging. The TCP connection with the server should
be setup by the client during the login phase and should remain active until the user logs out or
the server logs out the user due to inactivity (i.e., timeout). The server port is specified as a
command line argument. The client port does not need to be specified. Your client program should
let the operating system pick a random available port. There are several ways to facilitate the
establishment of a TCP connection between two clients for p2p messaging. We will leave the
specifics to you.

• Debugging: When implementing a complex assignment such as this, there are bound to be errors
in your code. We strongly encourage that you follow a systematic approach to debugging. If you
are using an IDE for development, then it is bound to have debugging functionalities. Alternately
you could use a command line debugger such as pbd (python), jdb (java) or gdb (c). Use one of
these tools to step through your code, create break points, observe the values of relevant variables
and messages exchanged, etc. Proceed step by step, check and eliminate the possible causes until
you find the underlying issue. Note that, we won’t be able to debug your code on the forum or
even in the help sessions.

• Backup and Versioning: We strongly recommend you to back-up your programs frequently.
CSE backups all user accounts nightly. If you are developing code on your personal machine, it
is strongly recommended that you undertake daily backups. We also recommend using a good
versioning system so that you can roll back and recover from any inadvertent changes. There are
many services available for both which are easy to use. We will NOT entertain any requests for
special consideration due to issues related to computer failure, lost files, etc.

• Language and Platform: You are free to use C, JAVA or Python to implement this assignment.
Please choose a language that you are comfortable with. The programs will be tested on CSE
Linux machines. So please make sure that your entire application runs correctly in VLAB. This
is especially important if you plan to develop and test the programs on your personal computers
(which may possibly use a different OS or version or IDE). Note that CSE machines support the
following: gcc version 8.2, Java 11, Python 2.7 and 3.7. If you are using Python, please clearly
mention in your report which version of Python we should use to test your code. You may
only use the basic socket programming APIs providing in your programming language of choice.

	 10	

You may not use any special ready-to-use libraries or APIs that implement certain functions of
the spec for you. If you are unsure, it is best you check with the course staff on the forum.

• There is no requirement that you must use the same text for the various messages displayed to the
user on the terminal as illustrated in the examples in Section 8. However, please make sure that
the text is clear and unambiguous.

• You are strongly encouraged to use the discussion forum to ask questions and to discuss different
approaches to solve the problem. However, you should not post your solution or any code
fragments on the forums.

• We will arrange for additional consultations in Weeks 7-10 to assist you with assignment related
questions. Information about the consults will be announced via the website.

5. Submission

Please ensure that you use the mandated file name. You may of course have additional header files
and/or helper files. If you are using C, then you MUST submit a makefile/script along with your code
(not necessary with Java or Python). This is because we need to know how to resolve the
dependencies among all the files that you have provided. After running your makefile we should have
the following executable files: server and client. In addition, you should submit a small report,
report.pdf (no more than 3 pages) describing the program design, data structure design, the
application layer message format and a brief description of how your system works. Also discuss any
design trade-offs considered and made. If your program does not work under any circumstances,
report this here. Also indicate any segments of code that you have borrowed from the Web or other
books.

You are required to submit your source code and report.pdf. You can submit your assignment
using the give command in a terminal from any CSE machine (or using VLAB or connecting via SSH
to the CSE login servers). Make sure you are in the same directory as your code and report, and then
do the following:

1. Type tar -cvf assign.tar filenames
e.g. tar -cvf assign.tar *.java report.pdf

2. When you are ready to submit, at the bash prompt type 3331

3. Next, type: give cs3331 assign assign.tar (You should receive a message stating the
result of your submission). Note that, COMP9331 students should also use this command.

Alternately, you can also submit the tar file via the WebCMS3 interface on the assignment page.

Important notes

• The system will only accept assign.tar submission name. All other names will be rejected.

• Ensure that your program/s are tested in VLAB before submission. We appreciate that you
may choose to develop the code natively on your machine and use an integrated development
environment. However, your code will be tested in VLAB through command line interaction
as noted in this document. In the past, there were cases where tutors were unable to compile
and run students’ programs while marking. To avoid any disruption, please ensure that you
test your program in VLAB before submitting the assignment. Note that, we will be unable
to award any significant marks if the submitted code does not run during marking.

	 11	

• You can submit as many times before the deadline. A later submission will override the earlier
submission, so make sure you submit the correct file. Do not leave until the last moment to submit,
as there may be technical, or network errors and you will not have time to rectify it.

Late Submission Penalty: Late penalty will be applied as follows:
• Up to 24 hours after deadline: 10% reduction
• More than 24 hours but less than 48 hours after deadline: 20% reduction
• More than 48 hours but less than 72 hours after deadline: 30% reduction
• More than 72 hours but less than 96 hours after deadline: 40% reduction
• More than 96 hours after deadline: NOT accepted

NOTE: The above penalty is applied to your final total. For example, if you submit your assignment
24 hours late and your score on the assignment is 10, then your final mark will be 10 – 1 (10% penalty)
= 9.

6. Plagiarism

You are to write all of the code for this assignment yourself. All source codes are subject to strict
checks for plagiarism, via highly sophisticated plagiarism detection software. These checks may
include comparison with available code from Internet sites and assignments from previous terms. In
addition, each submission will be checked against all other submissions of the current term. Do not
post this assignment on forums where you can pay programmers to write code for you. We will be
monitoring such forums. Please note that we take this matter quite seriously. The LIC will decide on
appropriate penalty for detected cases of plagiarism. The most likely penalty would be to award a
ZERO mark for the assignment and reporting your name to the CSE plagiarism officer (which would
mean adding your name to the school plagiarism register or escalating to a higher level if the name is
already on it). We are aware that a lot of learning takes place in student conversations, and don’t wish
to discourage those. However, it is important, for both those helping others and those being helped,
not to provide/accept any programming language code in writing, as this is apt to be used exactly as
is, and lead to plagiarism penalties for both the supplier and the copier of the codes. Write something
on a piece of paper, by all means, but tear it up/take it away when the discussion is over. It is OK to
borrow bits and pieces of code from sample socket code out on the Web and in books. You MUST
however acknowledge the source of any borrowed code. This means providing a reference to a book
or a URL when the code appears (as comments). Also indicate in your report the portions of your
code that were borrowed. Explain any modifications you have made (if any) to the borrowed code.

7. Marking Policy

You should test your program rigorously before submitting your code. Your code will be marked
using the following criteria:

The following table outlines the marking rubric for both CSE and non-CSE students:

Functionality Marks

(CSE)
Marks
(non-
CSE)

Successful log in and log out for single client and creation of new account 1 1.5
Blocking user for specified interval after 3 unsuccessful attempts 1 1.5
Successful log in for multiple clients 0.5 1
Correct implementation of presence notification 1 1.5
Correct implementation of whoelse 1 1.5

	 12	

Correct implementation of whoelsesince 1 1.5
Correct implementation of timeout functionality after inactivity 1 1.5
Correct implementation of broadcast 1 1.5
Correct implementation of messaging between two online clients 1.5 2.5
Correct implementation of offline messaging 2 2.5
Correct implementation of user blocking and unblocking and its effects 2 2.5
Properly documented report 1 1
Peer to peer Messaging

• Correct implementation of startprivate accounting for all different
considerations (declined chat, blocked user, etc.)

• Correct implementation of p2p messaging
• Correct implementation of stopprivate
• Correct implementation of timeout accounting for p2p interaction
• Correct implementation of simultaneous execution of p2p messaging

and regular commands sent to the server.	

(6)
2.5

2
0.5
0.5
0.5

N/A

NOTE: While marking, we will be testing for typical usage scenarios for the functionality
described in Section 3 and some straightforward error conditions. A typical marking session
will last for about 15 minutes during which we will initiate at most 5 clients. However, you
should not hard code any specific limits in your programs. We won’t be testing your code under
very complex scenarios and extreme edge cases.

8. Sample Interaction

Note that the following list is not exhaustive but should be useful to get a sense of what is expected.
We are assuming Java as the implementation language.

Successful Login

Terminal 1
java Server 4000 60 120

Terminal 2
java Client 4000

Username: yoda

Password: wise

Welcome to the greatest messaging application ever!

Unsuccessful Login (assume server is running on Terminal 1 as in Case 1)
Terminal 2
java Client 4000

Username: yoda

Password: weird

Invalid Password. Please try again

Password: green

Invalid Password. Please try again

Password: password

Invalid Password. Your account has been blocked. Please try again later

	 13	

The user yoda should now be blocked for 60 seconds (since block_time is 60). The client should
exit. Assume that a new terminal is opened before 60 seconds are over.
java Client 4000

Username: yoda

Password: wise

Your account is blocked due to multiple login failures. Please try again later

The client should exit. Assume now that a new terminal is opened after 60 seconds since when the
blocking action was in effect.
java Client 4000

Username: yoda

Password: wise

Welcome to the greatest messaging application ever!

New User Account Creation (assume server is running on Terminal 1 as in Case 1)
java Client 4000

Username: jaba

This is a new user. Enter a password: longtongue

Welcome to the greatest messaging application ever!

Example Interactions
Consider a scenario where three users Hans, Yoda and Luke are currently logged in. No one has yet
blocked anyone else. In the following we will illustrate the text displayed at the terminals for all three
users as they execute various commands. Some other examples with different users are also provided.

1. Hans executes whoelse followed by a command that is not supported

hans’s Terminal yoda’s Terminal luke’s Terminal
whoelse

yoda

luke

whatsthetime

Error. Invalid command

2. Hans messages Yoda and then messages an invalid user

hans’s Terminal yoda’s Terminal luke’s Terminal
message yoda Hey Dude
 hans: Hey Dude

message bob party time

Error. Invalid user

3. Hans broadcasts a message

hans’s Terminal yoda’s Terminal luke’s Terminal
broadcast vader is evil
 hans: vader is evil hans: vader is evil

4. Luke blocks Hans followed by a few interactions that illustrate the effect of blocking and

	 14	

unblocking.

hans’s Terminal yoda’s Terminal luke’s Terminal
 block hans

hans is blocked
broadcast I travel solo

Your message could not be
delivered to some
recipients

 hans: I travel solo

whoelse

yoda

message luke You angry?

Your message could not be
delivered as the
recipient has blocked you

block hans

Error. Cannot block self

 unblock yoda

Error. yoda was not
blocked

 unblock hans

hans is unblocked

broadcast jedis are cool

 hans: jedis are cool hans: jedis are cool

5. Assume that Vader was logged in 5 minutes ago but logged out 2 minutes ago and that R2D2 was
logged in 10 minutes ago but logged out 5 minutes ago.

hans’s Terminal yoda’s Terminal luke’s Terminal
 whoelsesince 200

hans

yoda

vader

 whoelsesince 500

hans

luke

vader

r2d2

6. Now assume that Hans and Yoda are logged on, but that Luke is currently offline. Luke joins in
later and receives a stored message from Hans. It also shows presence notification. Later, Yoda logs
out and the corresponding notification is shown to others.

hans’s Terminal yoda’s Terminal luke’s Terminal
message luke Let’s rock (Assume that luke logs in

after this message)

	 15	

luke logged in luke logged in

hans: Let’s rock

 logout

yoda logged out yoda logged out

7. Assume that Hans, Yoda and Luke are currently logged in. Hans first tries to send a private message
to Yoda without first executing startprivate. This is followed by the correct sequence of commands
for private messaging. Observe that a non-private message (i.e. through the server) can also be sent
by a user engaged in a private conversation.

hans’s Terminal yoda’s Terminal luke’s Terminal
private luke hey dude

Error. Private messaging
to luke not enabled

startprivate luke

Start private messaging
with luke

 hans would like to private
message, enter y or n: y

luke accepts private
messaging

private luke hey dude

 hans(private): hey dude

 private hans hello man

luke(private): hello man

message yoda force is
strong

 hans: force is strong

message luke now via
server

 hans: now via server

logout

 hans logged out, private
chat concluding

 hans logged out hans logged out

