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Transport Layer (Continued)
Reading Guide: Chapter 3, Sections: 3.5 – 3.7



Transport Layer Outline

3.1 transport-layer services
3.2 multiplexing and 

demultiplexing
3.3 connectionless transport: 

UDP
3.4 principles of reliable data 

transfer

3.5 connection-oriented 
transport: TCP
§ segment structure
§ reliable data transfer
§ flow control
§ connection management

3.6 principles of congestion 
control

3.7 TCP congestion control
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Recall: Components of a solution for reliable 
transport
v Checksums (for error detection) 
v Timers (for loss detection) 
v Acknowledgments 

§ Cumulative 
§ Selective 

v Sequence numbers (duplicates, windows)
v Sliding Windows (for efficiency)

§ Go-Back-N (GBN)
§ Selective Repeat (SR)
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What does TCP do?

Many of our previous ideas, but some key differences
v Checksum 
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Receive windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computed 
over header 
and data 
(SAME AS UDP)



What does TCP do?

Many of our previous ideas, but some key 
differences
v Checksum 
v Sequence numbers are byte offsets 
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TCP “Stream of Bytes” Service ..

Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3

Application @ Host A

Application @ Host B

Byte 80

Byte 80
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.. Provided Using TCP “Segments”

Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3

Host A

Host B

Byte 80

TCP Data

TCP Data

Byte 80

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but instructed by the Application e.g., 

1 byte in Telnet
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TCP Maximum Segment Size

v IP packet
§ No bigger than Maximum Transmission Unit (MTU)
§ E.g., up to 1500 bytes with Ethernet

v TCP packet
§ IP packet with a TCP header and data inside
§ TCP header ³ 20 bytes long

v TCP segment
§ No more than Maximum Segment Size (MSS) bytes
§ E.g., up to 1460 consecutive bytes from the stream
§ MSS = MTU – 20 (min IP header ) – 20 ( min TCP header )

IP Hdr
IP Data

TCP HdrTCP Data (segment)
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Sequence Numbers

Host A

ISN (initial sequence number)

Sequence number  
= 1st byte in segment = 

ISN + k

k bytes

10

Sequence numbers:
• byte stream “number” of first byte in 

segment’s data



Sequence & Ack Numbers

Host B

TCP Data

TCP Data

TCP 
HDR

TCP 
HDR

ACK sequence number 
= next expected byte
= seqno + length(data)

Host A

ISN (initial sequence number)

Sequence number  
= 1st byte in segment = 

ISN + k

k
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Receive windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Acknowledgment 
gives seqno just 
beyond highest 
seqno received in 
order
(“What Byte 

is Next”)



Why choose random ISN?

v Avoids ambiguity with back-to-back connections between same end-points

(a) When ISN=0                      (b) When ISN is random

v Potential security issue if the ISN is known 13



What does TCP do?

Most of our previous tricks, but a few differences
v Checksum 
v Sequence numbers are byte offsets 
v Receiver sends cumulative acknowledgements (like GBN)
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ACKing and Sequence Numbers
v Sender sends packet 

§ Data starts with sequence number X
§ Packet contains B bytes [X, X+1, X+2, ….X+B-1]

v Upon receipt of packet, receiver sends an ACK
§ If all data prior to X already received:

• ACK acknowledges X+B (because that is next expected byte)

§ If highest in-order byte received is Y s.t. (Y+1) < X
• ACK acknowledges Y+1
• Even if this has been ACKed before
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Host BHost A

Seq=100, Data=50

ISN=100

Seq=150, Data=50

Seq=200, Data=50

Seq=250, Data=50

ACK=200, Received 150-199

Seq=???, Data=50

Seq 100 to Seq 149

ACK=150, Received 100-149

ACK=250, Received 200-249

ACK=300, Received 250-299

An Example

Seq = 300 (new segment)
Since TCP uses cumulative ACKs, the receipt of ACK 300 before a timeout (for seg with sequence number 200) implies 
the receiver has received all 4 segments sent above
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Host BHost A

Seq=100, Data=50

ISN=100

Seq=150, Data=50

Seq=200, Data=50

Seq=250, Data=50

ACK=150, Received 100-149

ACK=???, Received 200-249

ACK=???, Received 250-299

Another Example

Both ACKs will be 150 as the
receiver has received
everything up to 149 in correct
sequence. The two out of
order segments are buffered.



Piggybacking

v So far, we’ve assumed distinct 
“sender” and “receiver” roles

v Usually both sides of a 
connection send some data
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Piggybacking 

• So far, we’ve assumed 
distinct “sender” and 
“receiver” roles 
 

• In reality, usually both 
sides of a connection 
send some data 
– request/response is a 

common pattern 
 

Client Server 

Without 
Piggybacking 

… 

Client Server 

With 
Piggybacking 

… 
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Example

Note: Connection establishment not shown. Alice’s end point selects the initial 
sequence number as 0 while Bob’s end point selects the initial sequence number as 10
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Another Example

Note: Connection establishment not shown. Alice’s end point selects the initial 
sequence number as 0 while Bob’s end point selects the initial sequence number as 10

HTTP response split into 3 segments (MSS = 1500 bytes)



Quiz

Seq = ?, 2 KBytes of data
ACK = ? 

ACK = ?

Seq = 1024, 1 KByte of data

Seq = 101, 2 KBytes of data

ACK =101 + 2048 = 2149

ACK =1024 + 1024 = 2048

Seq = 2149
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What does TCP do?

Most of our previous tricks, but a few differences
v Checksum 
v Sequence numbers are byte offsets 
v Receiver sends cumulative acknowledgements (like GBN)
v Receivers can buffer out-of-sequence packets (like SR)
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Loss with cumulative ACKs

v Sender sends packets with 100 bytes and sequence numbers:
§ 100, 200, 300, 400, 500, 600, 700, 800, 900, …

v Assume the fifth packet (seq. no. 500) is lost, but no others

v 6th packet onwards are buffered

v Stream of ACKs will be:
§ 200, 300, 400, 500, 500, 500, 500,…
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What does TCP do?

Most of our previous tricks, but a few differences
v Checksum 
v Sequence numbers are byte offsets 
v Receiver sends cumulative acknowledgements (like GBN)
v Receivers do not drop out-of-sequence packets (like SR)
v Sender maintains a single retransmission timer (like GBN) and retransmits 

on timeout (how much?)
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TCP round trip time, timeout



TCP round trip time, timeout
Q: how to set TCP timeout 

value?
§ longer than RTT, but RTT varies!
§ too short: premature timeout, 

unnecessary retransmissions
§ too long: slow reaction to 

segment loss

Q: how to estimate RTT?
§SampleRTT:measured time 

from segment transmission until 
ACK receipt
• ignore retransmissions

§SampleRTT will vary, want 
estimated RTT “smoother”
• average several recent

measurements, not just current 
SampleRTT
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TCP round trip time, timeout
EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

§ exponential weighted moving average (EWMA)
§ influence of past sample decreases exponentially fast
§ typical value: a = 0.125

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
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RT
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RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)
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TCP round trip time, timeout
§ timeout interval: EstimatedRTT plus “safety margin”
• large variation in  EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

DevRTT = (1-b)*DevRTT + b*|SampleRTT-EstimatedRTT|

(typically, b = 0.25)

§DevRTT: EWMA of SampleRTT deviation from EstimatedRTT: 

28

Practice Problem:
http://wps.pearsoned.com/ecs_kurose_compnetw_6/216/55463/14198700.cw/index.html
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TCP round trip time, timeout

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

(EstimatedRTT+4*DevRTT)

DevRTT

EstimatedRTT
RTT

Figure: Credits Prof David Wetherall UoW



Why exclude retransmissions in RTT computation?

v How do we differentiate between the real ACK, and ACK of the 
retransmitted packet?

ACK

Retransmission

Original Transmission

Sa
m

pl
eR

T
T

Sender Receiver

ACK
Retransmission

Original Transmission

SampleRTT

Sender Receiver
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TCP Sender (simplified)

event: data received from 
application
§ create segment with seq #
§ seq # is byte-stream number 

of first data byte in  segment
§ start timer if not already 

running 
• think of timer as for oldest 

unACKed segment
• expiration interval: 
TimeOutInterval

event: timeout
§ retransmit segment that 

caused timeout
§ restart timer

event: ACK received 
§ if ACK acknowledges 

previously unACKed segments
• update what is known to be 

ACKed
• start timer if there are  still 

unACKed segments

31

PUTTING IT
TOGETHER



TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that 
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative 
ACK, ACKing both in-order segments 

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap
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TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92,  8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

33



TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120,  15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

34

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=?

ACK = 92



What does TCP do?

Most of our previous tricks, but a few differences
v Checksum 
v Sequence numbers are byte offsets 
v Receiver sends cumulative acknowledgements (like GBN)
v Receivers may not drop out-of-sequence packets (like SR)
v Sender maintains a single retransmission timer (like GBN) and retransmits 

on timeout
v Introduces fast retransmit: optimisation that uses duplicate

ACKs to trigger early retransmission
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TCP fast retransmit
Host BHost A

tim
eo

ut

ACK=100

ACK=100

ACK=100

ACK=100

X

Seq=92, 8 bytes of dataSeq=100, 20 bytes of data

Seq=100, 20 bytes of data
Receipt of three duplicate ACKs 

indicates 3 segments received 
after a missing segment – lost 

segment is likely. So retransmit!

if sender receives 3 additional 
ACKs for same data (“triple 
duplicate ACKs”), resend unACKed 
segment with smallest seq #
§ likely that unACKed segment lost, 

so don’t wait for timeout

TCP fast retransmit
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Quiz: TCP Sequence Numbers?

A TCP Sender is about to send a segment of size 100 bytes with
sequence number 1234 and ack number 436. What is the highest
sequence number up to (and including) which this sender has received
from the receiver?
A. 1233
B. 436
C. 435
D. 1334
E. 536

37

www.pollev.com/salil

Answer : C
Cumulative ACK



Quiz: TCP Sequence Numbers?

A TCP Sender is about to send a segment of size 100 bytes with
sequence number 1234 and ack number 436. Is it possible that the
receiver has received byte number 1335?
A. Yes
B. No

38
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Answer: A. Possible this packet being transmitted may be a retransmission and 
the next packet (in sequence) may have been already received



Quiz: TCP Sequence Numbers?

The following statement is true about the TCP sliding window
protocol for implementing reliable data transfer
A. It exclusively uses the ideas of Go-Back-N
B. It exclusively uses the ideas of Selective Repeat
C. It uses a combination of ideas of Go-Back-N and Selective-Repeat
D. It uses none of the ideas of Go-Back-N and Selective-Repeat

39
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Answer: C



Transport Layer Outline

3.1 transport-layer services
3.2 multiplexing and 

demultiplexing
3.3 connectionless transport: 

UDP
3.4 principles of reliable data 

transfer

3.5 connection-oriented 
transport: TCP
§ segment structure
§ reliable data transfer
§ flow control
§ connection management

3.6 principles of congestion 
control

3.7 TCP congestion control
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TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster than 
application layer removes 
data from socket buffers?

Network layer 
delivering IP datagram 

payload into TCP 
socket buffers

from sender

Application removing 
data from TCP socket 

buffers
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TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster than 
application layer removes 
data from socket buffers?

Network layer 
delivering IP datagram 

payload into TCP 
socket buffers

from sender

Application removing 
data from TCP socket 

buffers
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TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster than 
application layer removes 
data from socket buffers?

from sender

Application removing 
data from TCP socket 

buffers

receive window flow control: # bytes 
receiver willing to accept
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TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network 
layer delivers data faster than 
application layer removes 
data from socket buffers?

receiver controls sender, so 
sender won’t overflow 
receiver’s buffer by 
transmitting too much, too fast

flow control

from sender

Application removing 
data from TCP socket 

buffers
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TCP flow control
§ TCP receiver “advertises” free buffer 

space in rwnd field in TCP header
• RcvBuffer size set via socket 

options (typical default is 4096 bytes)
• many operating systems autoadjust 
RcvBuffer

§ sender limits amount of unACKed 
(“in-flight”) data to received rwnd

§ guarantees receive buffer will not 
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering
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TCP flow control
§ TCP receiver “advertises” free buffer 

space in rwnd field in TCP header
• RcvBuffer size set via socket 

options (typical default is 4096 bytes)
• many operating systems autoadjust 
RcvBuffer

§ sender limits amount of unACKed 
(“in-flight”) data to received rwnd

§ guarantees receive buffer will not 
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format
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v What if rwnd = 0?
§ Sender would stop sending data
§ Eventually the receive buffer would have space when the application process 

reads some bytes
§ But how does the receiver advertise the new rwnd to the sender?

v Sender keeps sending TCP segments with one data byte to the 
receiver

v These segments are dropped but acknowledged by the receiver 
with a zero-window size 

v Eventually when the buffer empties, non-zero window is advertised

47

TCP flow control



Transport Layer Outline

3.1 transport-layer services
3.2 multiplexing and 

demultiplexing
3.3 connectionless transport: 

UDP
3.4 principles of reliable data 

transfer

3.5 connection-oriented 
transport: TCP
§ segment structure
§ reliable data transfer
§ flow control
§ connection management

3.6 principles of congestion 
control

3.7 TCP congestion control
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TCP connection management
before exchanging data, sender/receiver “handshake”:
§ agree to establish connection (each knowing the other willing to establish connection)
§ agree on connection parameters (e.g., starting seq #s)

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client 

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client 

application

network

Socket clientSocket =   
newSocket("hostname","port number");

Socket connectionSocket = 
welcomeSocket.accept();
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Agreeing to establish a connection

Q: will 2-way handshake always 
work in network?

§ variable delays
§ retransmitted messages (e.g.

req_conn(x)) due to message loss
§ message reordering
§ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x req_conn(x)
ESTAB

ESTAB
acc_conn(x)
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2-way handshake scenarios

connection 
x completes

choose x req_conn(x)
ESTAB

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)ACK(x+1)

No problem!
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2-way handshake scenarios

ESTAB

retransmit
req_conn(x)

req_conn(x)

client 
terminates

server
forgets x

connection 
x completes

choose x req_conn(x)
ESTAB

ESTAB

acc_conn(x)

acc_conn(x)Problem: half open 
connection! (no client)

52



2-way handshake scenarios

client 
terminates

ESTAB

choose x req_conn(x)
ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection 
x completes server

forgets x

Problem: dup data
accepted!

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

retransmit
req_conn(x)

ESTAB
req_conn(x)



TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;
send ACK for SYNACK;

this segment may contain 
client-to-server data received ACK(y) 

indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

clientSocket = socket(AF_INET, SOCK_STREAM)

serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
connectionSocket, addr = serverSocket.accept()

clientSocket.connect((serverName,serverPort))
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SYN Consumes 1 Sequence No



A human 3-way handshake protocol

1. On belay?

2. Belay on.
3. Climbing.

55



TCP 3-way handshake: Partial state machine 

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

clientSocket.connect((serverName, 
serverPort))

SYN(seq=x)

connectionSocket, addr = 
welcomeSocket.accept();

SYN(x)

SYNACK(seq=y,ACKnum=x+1)

SYNACK(seq=y,ACKnum=x+1)
ACK(ACKnum=y+1)ACK(ACKnum=y+1)

L

56

welcomeSocket.listen(1);



What if the SYN Packet Gets Lost?

v Suppose the SYN packet gets lost
§ Packet is lost inside the network, or:
§ Server discards the packet (e.g., it’s too busy)

v Eventually, no SYN-ACK arrives
§ Sender sets a timer and waits for the SYN-ACK
§ … and retransmits the SYN if needed

v How should the TCP sender set the timer?
§ Sender has no idea how far away the receiver is
§ Hard to guess a reasonable length of time to wait
§ SHOULD (RFCs 1122,2988) use default of 3 second, 

RFC 6298 use default of 1 second
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SYN Loss and Web Browsing
v User clicks on a hypertext link

§ Browser creates a socket and does a “connect”
§ The “connect” triggers the OS to transmit a SYN

v If the SYN is lost…
§ 1-3 seconds of delay: can be very long
§ User may become impatient
§ … and click the hyperlink again, or click “reload”

v User triggers an “abort” of the “connect”
§ Browser creates a new socket and another “connect”
§ Essentially, forces a faster send of a new SYN packet!
§ Sometimes very effective, and the page comes quickly
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TCP: closing a connection
v client, server each close their side of connection

§ send TCP segment with FIN bit = 1
v respond to received FIN with ACK

§ on receiving FIN, ACK can be combined with own FIN
v simultaneous FIN exchanges can be handled
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FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

Normal Termination, One at a Time

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB

60
TIMED_WAIT: Can retransmit ACK if last ACK is lost

FIN Consumes 1 Sequence No



CLOSE_WAIT

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

FIN + ACK 
together
can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB
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FINbit=1, seq=y

Normal Termination, Both Together



ACKbit=1, 
ACKnum=y+1

wait for server
close

Send Ack

can no longer
send datacan no longer

send but can
receive data

clientSocket.close()

FINbit=1, seq=x

client state server state

62

FINbit=1, seq=y

Simultaneous Closure

ACKbit=1, 
ACKnum=x+1

CLOSING

TIMED_WAIT

CLOSED

FIN_WAIT_1

ESTAB

CLOSING

CLOSED

FIN_WAIT_1

ESTAB

TIMED_WAIT



Abrupt Termination

v A sends a RESET (RST) to B
§ E.g., because application process on A crashed

v That’s it
§ B does not ack the RST
§ Thus, RST is not delivered reliably
§ And: any data in flight is lost
§ But: if B sends anything more, will elicit another RST

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B

D
ata RS

T
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TCP Finite State Machine

CS144, Stanford University

FSM Example: TCP Connection

6 http://upload.wikimedia.org/wikipedia/commons/thumb/a/a2/Tcp_state_diagram_fixed.svg/
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TCP SYN Attack (SYN flooding)
v Miscreant creates a fake SYN packet

§ Destination is IP address of victim host (usually some server)
§ Source is some spoofed IP address

v Victim host on receiving creates a TCP connection state i.e allocates buffers, 
creates variables, etc and sends SYN ACK to the spoofed address (half-open 
connection)

v ACK never comes back
v After a timeout connection state is freed
v However for this duration the connection state is unnecessarily created
v Further miscreant sends large number of fake SYNs

§ Can easily overwhelm the victim
v Solutions: 

§ Increase size of connection queue
§ Decrease timeout wait for the 3-way handshake
§ Firewalls: list of known bad source IP addresses
§ TCP SYN Cookies (explained on next slide)
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TCP SYN Cookie
v On receipt of SYN, server does not create connection state
v It creates an initial sequence number (init_seq) that is a hash of 

source & dest IP address and port number of SYN packet (secret 
key used for hash)
§ Replies back with SYN ACK containing init_seq
§ Server does not need to store this sequence number

v If original SYN is genuine, an ACK will come back
§ Same hash function run on the same header fields to get the initial sequence 

number (init_seq)
§ Checks if the ACK is equal to (init_seq+1)
§ Only create connection state if above is true

v If fake SYN, no harm done since no state was created

http://etherealmind.com/tcp-syn-cookies-ddos-defence/



Quiz: TCP Connection Management?

Assume that one end of a TCP connection selects an initial sequence
number 120. The first TCP segment containing data sent by this end
point will have a sequence number of ____
A. 120
B. 121
C. 122
D. 128
E. 0

67
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ANSWER: B (because SYN uses 1 seq no.)



Quiz: TCP Connection Management?

Assume that one end point of the TCP connection sends a FIN
segment. If it never receives an ACK, what should it do?

A. Assume that the connection is closed and do nothing

B. Retransmit the FIN

C. Transmit an ACK

D. Start crying

68
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ANSWER: B
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Transport Layer: Outline

3.1 transport-layer services
3.2 multiplexing and 

demultiplexing
3.3 connectionless transport: 

UDP
3.4 principles of reliable data 

transfer

3.5 connection-oriented 
transport: TCP
§ segment structure
§ reliable data transfer
§ flow control
§ connection management

3.6 principles of congestion 
control

3.7 TCP congestion control



congestion:
v informally: “too many sources sending too much data too 

fast for network to handle”
v different from flow control!
v manifestations:

§ lost packets (buffer overflow at routers)
§ long delays (queueing in router buffers)

v a top-10 problem!

Principles of congestion control
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Congestion

71

Trash 

Congestion 

Router 

Router’s buffer. 

Incoming rate is faster than 
outgoing link can support. 

Ugh.  I so 
can’t deal 

with this right 
now! 



Congestion Collapse
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Congestion Collapse 

… 

… 

… 

… 

Link A Link B 



Congestion Collapse
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Congestion Collapse 

… 

… 

… 

… 

Link A Link B 

One sender starts, 
but there’s still 
capacity at link A. 

S1 



Congestion Collapse
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Congestion Collapse 

… 

… 

… 

… 

Link A Link B 

S1 

S2 

Another sender starts 
up.  Link A is showing 
slight delay, but still 
doing ok. 
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Congestion Collapse 

… 

… 

… 

… 

Link A Link B 

S1 

S2 

Unrelated traffic 
passes through and 
congests link B. 



Congestion Collapse 

… 

… 

… 

… 

Link A Link B 

S1 

S2 
S2’s traffic is being dropped at 
Link B, so it starts retransmitting 
on top of what it was sending. 

(This is very bad.  S2 is now sending lots of traffic over link A 
that has no hope of crossing link B.) 

Congestion Collapse
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Congestion Collapse
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Congestion Collapse 

… 

… 

… 

… 

Link A Link B 

S1 

S2 

Increased traffic from S2 
causes Link A to become 
congested.  S1 starts 
retransmitting. 



Congestion Collapse
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Congestion Collapse 

… 

… 

… 

… 

Link A Link B 

S1 

S2 

Congestion 
propagates 
backwards… 



congestion:
v Increases delays

§ If delays > RTO, sender retransmits
v Increases loss rate

§ Dropped packets also retransmitted
v Increases retransmissions, many unnecessary

§ Wastes capacity of traffic that is never delivered
§ Increase in load results in decrease in useful work done

v Increases congestion, cycle continues … 

Without congestion control
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Cost of Congestion

v Knee – point after which 
§ Throughput increases slowly
§ Delay increases fast

v Cliff – point after which
§ Throughput starts to drop to zero 

(congestion collapse)
§ Delay approaches infinity

Load

Load

T
hr

ou
gh

pu
t

D
el

ay

knee cliff

congestion
collapse

packet
loss
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This happened to the Internet (then NSFnet) in 1986
v Rate dropped from a blazing 32 Kbps to 40bps
v This happened on and off for two years
v In 1988, Van Jacobson published “Congestion Avoidance and Control”
v The fix: senders voluntarily limit sending rate

Congestion Collapse
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Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion 
control:

v no explicit feedback 
from network

v congestion inferred 
from end-system 
observed loss, delay

v approach taken by 
TCP

network-assisted 
congestion control:

v routers provide 
feedback to end systems
§ single bit indicating 

congestion (SNA, 
DECbit, TCP/IP ECN, 
ATM)

§explicit rate for 
sender to send at
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Transport Layer: Outline

3.1 transport-layer services
3.2 multiplexing and 

demultiplexing
3.3 connectionless transport: 

UDP
3.4 principles of reliable data 

transfer

3.5 connection-oriented 
transport: TCP
§ segment structure
§ reliable data transfer
§ flow control
§ connection management

3.6 principles of congestion 
control

3.7 TCP congestion control
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TCP’s Approach in a Nutshell
v TCP connection maintains a window

§ Controls number of packets in flight 

v TCP sending rate:
§ roughly: send cwnd bytes, wait RTT for ACKs, then 

send more bytes

v Vary window size to control sending rate

rate ~~
cwnd
RTT

bytes/sec

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte 
sent

cwnd
sender sequence number space 
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All These Windows…

v Congestion Window: CWND
§ How many bytes can be sent without overflowing routers
§ Computed by the sender using congestion control algorithm

v Flow control window: Advertised / Receive Window (RWND)
§ How many bytes can be sent without overflowing receiver’s buffers
§ Determined by the receiver and reported to the sender

v Sender-side window = minimum{CWND, RWND}
• Assume for this discussion that RWND >> CWND
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CWND

v This lecture will talk about CWND in units of MSS 
§ (Recall MSS: Maximum Segment Size, the amount of payload data in a TCP 

packet)
§ This is only for pedagogical purposes

v Keep in mind that real implementations maintain CWND in bytes

86



Two Basic Questions

v How does the sender detect congestion?

v How does the sender adjust its sending rate?

87



Detection Congestion: Infer Loss

v Duplicate ACKs: isolated loss
§ dup ACKs indicate network capable of delivering some segments 

v Timeout: much more serious
§ Not enough dup ACKs
§ Must have suffered several losses

v Will adjust rate differently for each case
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X

fast retransmit after sender 
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100
tim

eo
ut ACK=100

ACK=100
ACK=100

RECAP: TCP fast retransmit (dup acks)

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data
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Rate Adjustment

v Basic structure:
§ Upon receipt of ACK (of new data): increase rate
§ Upon detection of loss: decrease rate

v How we increase/decrease the rate depends on the 
phase of congestion control we’re in: 
§ Discovering available bottleneck bandwidth vs.
§ Adjusting to bandwidth variations
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TCP Slow Start (Bandwidth discovery) 

v when connection begins, increase 
rate exponentially until first loss 
event:
§ initially cwnd = 1 MSS
§ double cwnd every RTT (full ACKs)
§ Simpler implementation achieved by 

incrementing cwnd for every ACK 
received 
§ cwnd += 1 for each ACK

v summary: initial rate is slow but 
ramps up exponentially fast

Host A

one segment

R
TT

Host B

time

two segments

four segments
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Adjusting to Varying Bandwidth

v Slow start gave an estimate of available bandwidth 

v Now, want to track variations in this available 
bandwidth, oscillating around its current value
§ Repeated probing (rate increase) and backoff (rate decrease)
§ Known as Congestion Avoidance (CA)

v TCP uses: “Additive Increase Multiplicative Decrease” 
(AIMD)
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AIMD
v approach: sender increases transmission rate (window size), probing for usable 

bandwidth, until another congestion event occurs
§ additive increase: increase  cwnd by 1 MSS every RTT until loss detected

• For each successful RTT (all ACKS), cwnd = cwnd +1 (in multiples of MSS)
• Simple implementation: for each ACK, cwnd = cwnd + 1/cwnd (since 

there are cwnd/MSS packets in a window)
§ multiplicative decrease: cut cwnd in half after loss 

c
w
n
d
:

TC
P 

se
nd

er
 

co
ng

es
tio

n 
w

in
do

w
 s

iz
e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time 93



Leads to the TCP “Sawtooth”

Loss

Exponential
“slow start”

t

Window
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Loss
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Slow-Start vs. AIMD

v When does a sender stop Slow-Start and start Congestion Avoidance?

v Introduce a “slow start threshold” (ssthresh)
§ Initialized to a large value

v Convert to CA when cwnd = ssthresh, sender switches from slow-
start to AIMD-style increase
§ On timeout, ssthresh = CWND/2
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Implementation

v State at sender
§ CWND (initialized to a small constant)
§ ssthresh (initialized to a large constant)
§ [Also dupACKcount and timer, as before]

v Events 
§ ACK (new data) 
§ dupACK (duplicate ACK for old data)
§ Timeout 
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Event: ACK (new data)

v If CWND < ssthresh
§ CWND += 1

• Hence after one RTT (All ACKs 
with no drops):

CWND = 2xCWND
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Event: ACK (new data)

v If CWND < ssthresh
§ CWND += 1

v Else 
§ CWND = CWND + 

1/CWND

Slow start phase

• Hence after one RTT (All ACKs
with no drops):

CWND = CWND + 1

“Congestion 
Avoidance” phase 
(additive increase)
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Event: dupACK

v dupACKcount ++ 

v If dupACKcount = 3 /* fast retransmit  */ 
§ ssthresh = CWND/2
§ CWND = CWND/2
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Event: TimeOut

v On Timeout 
§ ssthresh ß CWND/2
§ CWND ß 1
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Example

t

Window

Slow-start restart: Go back to CWND = 1 MSS, but take 
advantage of knowing the previous value of CWND

Slow start in operation until 
it reaches half of previous 
CWND, I.e., SSTHRESH

TimeoutFast 
Retransmission

SSThresh
Set to Here
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TCP Flavours 

v TCP-Tahoe
§ cwnd =1 on triple dup ACK & timeout

v TCP-Reno
§ cwnd =1 on timeout
§ cwnd = cwnd/2 on triple dup ACK

v TCP-newReno
§ TCP-Reno + improved fast recovery (SKIPPED)

v TCP-SACK (NOT COVERED IN THE COURSE)
§ incorporates selective acknowledgements 
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Quiz: TCP Congestion Control?

In the figure how many congestion avoidance intervals
can you identify?
A. 0
B. 1
C. 2
D. 3
E. 4

103
www.pollev.com/salil

Note: the transition at round 17 is 
not entirely acurrate, the window 
should reduce to 21 (currently 24)

Answer: C
6 to 16 ,17 to 22



Quiz: TCP Congestion Control?

In the figure how many slow start intervals can you identify?
A. 0
B. 1
C. 2
D. 3
E. 4

104
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Answer: C
Round 1 – 6, and Round 23-26



Quiz: TCP Congestion Control?

In the figure after the 16th transmission round, segment loss
is detected by _______ ?
A. Triple Dup Ack
B. Timeout

105
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Answer: A as the window is 
cut to half the previous value



Quiz: TCP Congestion Control?

In the figure what is the initial value of sstresh (steady state
threshold)?
A. 0
B. 28
C. 32
D. 42
E. 64
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Answer: C (In Round 6, there is a 
transition from slow start to 
Congestion avoidance when the 
window is equal to 32 (sstresh)



Quiz: TCP Congestion Control?

In the figure what is the value of sstresh (steady state
threshold) at the 18th round?
A. 1
B. 32
C. 42
D. 21
E. 20

107
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Answer: D
(sstresh is set to 21 when a triple 
dup ack event is encountered in the 
16th round) 



v TCP, UDP: principal transport protocols for 40 years
v different “flavors” of TCP developed, for specific scenarios:

Evolving transport-layer functionality

§moving transport–layer functions to application layer, on top of UDP
• HTTP/3: QUIC

Scenario Challenges
Long, fat pipes (large data 
transfers)

Many packets “in flight”; loss shuts down 
pipeline

Wireless networks Loss due to noisy wireless links, mobility; 
TCP treat this as congestion loss

Long-delay links Extremely long RTTs
Data center networks Latency sensitive
Background traffic flows Low priority, “background” TCP flows 
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v application-layer protocol, on top of UDP
§ increase performance of HTTP
§ deployed on many Google servers, apps (Chrome, mobile YouTube app) 

QUIC: Quick UDP Internet Connections

IP

TCP

TLS

HTTP/2

IP

UDP

QUIC

HTTP/2 (slimmed)

Network

Transport

Application

HTTP/2 over TCP

HTTP/3

HTTP/2 over QUIC over UDP
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QUIC: Quick UDP Internet Connections
adopts approaches we’ve studied in this chapter for 
connection establishment, error control, congestion control

v multiple application-level “streams” multiplexed over single 
QUIC connection
§ separate reliable data transfer, security
§ common congestion control

• error and congestion control: “Readers familiar with TCP’s loss 
detection and congestion control will find algorithms here that parallel 
well-known TCP ones.” [from QUIC specification]

• connection establishment: reliability, congestion control, 
authentication, encryption, state established in one RTT
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QUIC: Connection establishment

TCP handshake
(transport layer)

TLS handshake
(security)

TCP (reliability, congestion control 
state) + TLS (authentication, crypto 
state)

§ 2 serial handshakes

data

QUIC handshake

data

QUIC:  reliability, congestion control, 
authentication, crypto state

§ 1 handshake
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QUIC: streams: parallelism, no HOL blocking

(a) HTTP 1.1

TLS encryption

TCP RDT

TCP Cong. Contr.

tr
an

sp
or
t

ap
pl
ic
at
io
n

(b) HTTP/2 with QUIC: no HOL blocking

TCP RDT

TCP Cong. Contr.

TLS encryption

error!

HTTP 
GET 

HTTP 
GET 

HTTP 
GET 

QUIC Cong. Cont.

QUIC 
encrypt

QUIC
RDT

QUIC
RDT

QUIC
RDT

QUIC 
encrypt

QUIC 
encrypt

UDP UDP

QUIC Cong. Cont.

QUIC 
encrypt

QUIC
RDT

QUIC
RDT

QUIC
RDT

QUIC 
encrypt

QUIC 
encrypt

error!

HTTP 
GET HTTP 

GET HTTP 
GET 
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Transport Layer: Summary
v principles behind 

transport layer services:
§ multiplexing, 

demultiplexing
§ reliable data transfer
§ flow control
§ congestion control

v instantiation, 
implementation in the 
Internet
§ UDP
§ TCP

next:
v leaving the 

network “edge”
(application, 
transport layers)

v into the network 
“core”
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