
COMP 3331/9331
Assignment T3 2021

Instant Messaging Application

All details are in the specification

• READ THE SPECIFICATION
• READ THE SPECIFICATION (AGAIN)
• Information about deadlines, file names, submission instructions,

marking guidelines, example interactions and various other specifics
are in the specification
• Choice of programming languages: C, Java, Python (versions are noted

in the specification)
• This talk provides a high-level overview

Two main components
• Server

• Always on
• Does not remember state from prior executions, on start-up no clients are initially active
• Responsible for

• User authentication
• Direct messages between clients (online or offline)
• Additional functions: presence notification, blacklisting, timeout inactive users
• Participates in setting up a p2p messaging session between two clients

• Implements a request/response API for interacting with client(s)
• Client

• Interacts with user through command line
• Exchanges messages (request/response API) with the server to manifest the commands

• Transport Protocol: TCP (required)
• You must design your own application layer protocol

• This includes the syntax/semantics of the messages exchanged between the client and server
and the actions to be taken upon receiving each message

Execution
• Client and server executed on same machine

• Assume IP address of the other endpoint is 127.0.0.1 (local host)
• Server

• Command line arguments:
• Server port (use a value greater than 1023 and less than 65536)
• Block duration in seconds (the duration for which a user is blocked after 3 unsuccessful login attempts)
• Timeout in seconds (the duration of inactivity after which a user is logged off)

• Executed first – waits for client(s) to connect
• Client

• Command line arguments:
• Server port number (should match the first argument for the server)

• Let the OS pick an an available port
• Client should initiate TCP connection with server (“127.0.0.1”, server port)
• User should interact with the client through the command line (command prompt, console)

Part 1: Client-Server Mode
• User Authentication

• Credentials file will be available in current working directory of server with read and write
permissions set (chmod +wr) – sample provided

• Ask user to enter username (assume username is in correct format)
• If username exists and the user is not already logged on (from another client), then prompt user

for password
• If password matches, the user is assumed to be logged on
• If password doesn’t match, aske user to enter password again
• If a user successively fails three times, then they are blocked for the block duration – i.e., the user cannot

login again for that time
• If username doesn’t exist prompt the user for a new password

• Create a new entry in the credentials file (assume password is in correct format, no checks necessary)

• Presence Broadcast
• When a user logs on/off, display a message to all online users excluding those who this user may

have blocked
• Detection of inactivity

• If a user does not issue a valid command (client-server or p2p) for timeout seconds, they are
assumed to be inactive and logged off

Part 1: Client-Server Mode
• message user
• Assume message is in the correct format (no checks are necessary)
• If user is online and has not blocked the sender, send the message
• If user is offline and has not blocked the sender, store the message for delivery

when user logs on
• If user has blocked the sender or is invalid (i.e., username does not exist in the

credentials file), then report an appropriate error message

• broadcast message
• Send message to all online users except those who have blocked the sender (in

which case, report to sender that message could not be sent to some users)

Part 1: Client-Server Mode
• whoelse

• Display names of all users currently online excluding those who have blocked the user executing the
command

• whoelsesince time
• Display names of all users who may logged in at any time within the past time excluding those who

have blocked the user executing the command
• block user

• blocks user from sending messages to command issuer, receive presence notifications about
command issuer, and check online status (i.e.,whoelse, whoelsesince) about command issuer

• unblock user
• reverse of above

• logout
• Log out user and send presence notification and close a p2p messaging session if active

• Handle simple errors
• E.g., invalid commands or blocking an invalid user, etc
• Simple error message displayed to user

Part 1: Client-Server Mode

• Server should support
multiple clients
• All clients and server

executing on same machine
(127.0.0.1)
• Multi-threading

• Main thread waits for a new
TCP connection, creates the
connection socket and
spawns a child thread for
interacting with one client

TCP handshake

Client
Socket

Welcoming, port X
Socket

Server ProcessClient Process

Connection, port X
Socket 1pipe

Client Process

Client
Socket

Connection, port X
Socket 2

pipe

Part 2: Peer to Peer Messaging
• Setup process managed by server
• User A will initiate startprivate command with user B
• Server will check if user B has blocked User A
• Server will check with user B if they are willing to accept
• If OK to proceed, then certain information about B should be conveyed to A so

that A can initiate a TCP connection with B

• Private user message
• Once p2p session is setup, the two users can message each other directly

bypassing the server

• Stop private
• Ends the p2p session

• Each user can be involved in at most one p2p session at any given time

Part 2: Peer to Peer Messaging

• Possible for user to move back and forth between client/server and
p2p messaging commands
• Client needs to maintain a TCP connection with another client in

addition to maintaining the TCP connection with the server
• Client also needs to interact with the user through command-line

(even in client/server interactions) while also simultaneously
interacting with the server and other client (in p2p messaging)
• Both above can be readily achieved via multi-threading. Alternately,

you may explore non-blocking IO (select)

Data Structures

• Server must maintain certain state information including # of
valid/online users, login times, blocked user lists, offline messages,
etc.
• Proper design of data structures is essential to ensure all functionality

can be achieved
• Be careful about accessing the data structures across multiple threads
• Avoid arbitrary upper limits for variables (e.g., no of users)
• Dynamic memory allocation is recommended

How to start?

• How to get started
• Start with a server supports only one client at a time
• Add user authentication
• Extend server to support multiple client
• Add presence notification
• Add messaging (1 to 1, broadcast, offline)
• Add inactivity detection
• Add support for checking online (+history) queries
• Add blocking
• Next move to p2p messaging

Messages displayed to users

• Use meaningful text
• Does NOT have to match the examples in the specification
• Assignment will be MANUALLY marked by your tutors
• No messages at the server

Report

• Program design
• Data structures
• Details of the application layer protocol
• Trade-offs considered
• Point out issues if program does not work under certain

circumstances
• Refer to all borrowed code

Testing

• Test, Test, Test
• Server and client(s) executing on same machine
• Emphasis on correct behaviour
• Basic error checking
• MUST test In VLAB environment and through command line
• If we cannot run your code, then we cannot award you any marks
• Detailed marking rubric is available in specification
• SYSTEMATIC DEBUGGING + UNIT FUNCTIONS

Plagiarism

• DO NOT DO IT
• Both parties involved are considered guilty
• If posting code on online repositories, then ensure access is private
• If caught
• You will receive zero marks (and there may be further repercussions if this is

not your first offence)
• Your name will be added to the school plagiarism register

• Every term I have had to do the above for a small group of students
• Would be nice to not have to do it in this term

Non-CSE Students

• Must be enrolled in a non-CSE program (double degree that includes
a CSE major does not qualify)
• Can opt for non-CSE option
• MUST request permission to do so by 5pm, 15th October by emailing

cs3331@cse.unsw.edu.au

mailto:cs3331@cse.unsw.edu.au
mailto:cs3331@cse.unsw.edu.au

Resources

• Many program snippets are on the web page
• Including multi-threading code snippets

• Your socket programming experience in Labs 2 and 3 will be useful
• Repository of resources is here

https://webcms3.cse.unsw.edu.au/COMP3331/21T3/resources/65959

https://webcms3.cse.unsw.edu.au/COMP3331/21T3/resources/65959

Seeking Help

• Assignment specific consults (for all 3 programming languages) from
Weeks 7-10
• Schedule to be announced in a few days

• Course message forum
• Read posts from other students before posting your question

• Read the spec – very often your answer will be in there

