Network Control Plane - Answers

Q1)

(a) The shortest path routes from F to all the destinations have been shown as thick lines in Figure 1 in the question. The operation of Dijkstra's algorithm is shown in the following table:

Step	N	D (A),	D(B),	D(C),	D(D), p(D)	D(E), p(E)
		p(A)	p(B)	p(C)		
0	F	æ	4,F	æ	∞	1.F
1	FE	æ	4.F	æ	5,E	
2	FEB	5,B		7,B	5,E	
3	FEBD	5,B		6,D		
4	FEBDA			6,D		
5	FEBDAC					

(b) The destination table for Distance Vector in B is shown below:

Cost to								
A	C	D	E	F				
1	3	4	5	4				

Q2. Consider the network shown in Figure 2 and assume that each node initially knows the costs to each of its neighbours. Consider the distance vector algorithm and show the distance table entries at node z.

Figure 2 Network topology for Q8

Answer: The distance table in z is:

	Via					
		V	Х	Y		
	U	6	4	13		
То	V	5	5	14		
	Х	8	2	11		
	Y	9	3	10		

Q3. Consider the count-to-infinity problem in the distance vector routing. Will this problem occur if we decrease the cost of a link? How about if we connect two nodes which do not have a link?

Answer: No, decreasing the cost of a link would not result in the count-to-infinity problem. Connecting two nodes is equivalent to decreasing the link weight from

infinite to a finite value.